硬盘知识

发布网友 发布时间:2022-04-22 04:23

我来回答

3个回答

懂视网 时间:2022-04-12 04:10

从整体的角度上,硬盘接口类型可分为IDE(ATA)、SATA、SCSI 、SAS和光纤通道五种,IDE和SATA接口硬盘多用于家用产品中,也有部分应用于服务器,SCSI接口的硬盘则主要应用于服务器市场,而光纤通道只在高端服务器上,价格昂贵。 IDE接口: IDE的英文全称为Inte

从整体的角度上,硬盘接口类型可分为IDE(ATA)、SATA、SCSI 、SAS和光纤通道五种,IDE和SATA接口硬盘多用于家用产品中,也有部分应用于服务器,SCSI接口的硬盘则主要应用于服务器市场,而光纤通道只在高端服务器上,价格昂贵。

IDE接口:

IDE的英文全称为“Integrated Drive Electronics”,可以译成“电子集成驱动器”, 常见的2.5英寸IDE硬盘接口它的本意是指把“硬盘控制器”与“盘体”集成在一起的硬盘驱动器。把盘体与控制器集成在一起的做法是为了减少了硬盘接口的电缆数目与长度,增加数据传输的可靠性。而对用户而言,硬盘安装起来也更为方便。

IDE代表着硬盘的一种类型,但在实际的应用中,人们也习惯用IDE来称呼最早出现IDE类型硬盘ATA-1,这种类型的接口随着接口技术的发展已经被淘汰了,而其后发展分支出更多类型的硬盘接口,比如ATA、Ultra ATA、DMA、Ultra DMA等接口都属于IDE硬盘。下面我们来看看IDE接口的优缺点:

IDE接口优点:该接口的硬盘价格低廉、兼容性强、性价比高。

IDE接口缺点:数据传输速度慢、线缆长度过短、连接设备少、不支持热插拔、不够完善的错误检验技术、接口速度的可升级性差。

SATA接口类型:

SATA全称是Serial Advanced Technology Attachment,是由Intel、IBM、Dell、APT、Maxtor和 Seagate公司共同提出的硬盘接口规范。2001年,Seagate宣布了Serial ATA 1.0标准,正式宣告了SATA规范的确立。

Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。Serial ATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。

Serial ATA 1.0定义的数据传输率可达150MB/s,这比目前最新的并行ATA(即ATA/133)所能达到133MB/s的最高数据传输率还高,而在 Serial ATA 2.0的数据传输率将达到300MB/s,最终SATA将实现600MB/s的最高数据传输率。下面我们来看一下ATA硬盘接口优缺点

SCSI接口类型:

SCSI的英文全称为“Small Computer System Interface”(小型计算机系统接口),SCSI并不是专门为硬盘设计的接口,而是一种广泛应用于小型机上的高速数据传输技术。SCSI接口具有应用范围广、多任务、带宽大、CPU占用率低,以及热插拔等优点,主要应用于中、高端服务器和高档工作站中。

SCSI接口类型优点:传输速率高、读写性能好、可连接多个设备、可支持热插拔。

SAS接口类型:

SAS(Serial Attached SCSI)即串行连接SCSI,是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。

SAS的接口技术可以向下兼容SATA。具体来说,二者的兼容性主要体现在物理层和协议层的兼容。在物理层,SAS接口和SATA接口完全兼 容,SATA硬盘可以直接使用在SAS的环境中,从接口标准上而言,SATA是SAS的一个子标准,因此SAS控制器可以直接操控SATA硬盘,但是 SAS却不能直接使用在SATA的环境中,因为SATA控制器并不能对SAS硬盘进行控制;在协议层,SAS由3种类型协议组成,根据连接的不同设备使用 相应的协议进行数据传输。其中串行SCSI协议(SSP)用于传输SCSI命令;SCSI管理协议(SMP)用于对连接设备的维护和管理;SATA通道协议(STP)用于SAS和SATA之间数据的传输。因此在这3种协议的配合下,SAS可以和SATA以及部分SCSI设备无缝结合。

在系统中,每一个SAS端口可以最多可以连接16256个外部设备,它同时提供了3.5英寸和2.5英寸的接口,因此能够适合不同服务器环 境的需求。SAS依靠SAS扩展器来连接更多的设备,目前的扩展器以12端口居多。

和传统并行SCSI接口比较起来,SAS不仅在接口速度上得到显著提升(现在主流Ultra 320 SCSI速度为320MB/sec,而SAS刚起步速度就达到300MB/sec,未来会达到600MB/sec甚至更多),而且由于采用了串行线缆,不仅可以实现更长的连接距离,还能够提高抗干扰能力,并且这种细细的线缆还可以显著改善机箱内部的散热情况。下面我们来看一下优缺点:

SAS接口类型优点:传输速度快,可热插拔,更稳定。

光纤通道:

光纤通道的英文拼写是Fibre Channel,和SCIS接口一样光纤通道最初也不是为硬盘设计开发的接口技术,是专门为网络系统设计的,但随着存储系统对速度的需求,才逐渐应用到硬 盘系统中。光纤通道硬盘是为提高多硬盘存储系统的速度和灵活性才开发的,它的出现大大提高了多硬盘系统的通信速度。光纤通道的主要特性有:热插拔性、高速带宽、远程连接、连接设备数量大等。

光纤通道是为在像服务器这样的多硬盘系统环境而设计,能满足高端工作站、服务器、海量存储子网络、外设间通过集线器、交换机和点对点连接进行双向、串行数据通讯等系统对高数据传输率的要求。它的理论极限值为1.06GBps。不过现在有一些公司开始推出2.12Gbps 的产品,它支持下一代的光纤通道(即Fibre Channel II)。不过为了能得到更高的数据传输率,市面的光纤产品有时是使用多光纤通道来达到更高的带宽。下面我们来看一下优缺点:

光纤通道优点:最多可连接126个设备、低CPU占用率、支持热插拔、在主机系统运行时就可安装、通用性强、连接距离大。

光纤通道缺点:产品价格昂贵、组建复杂。

固态硬盘

固态硬盘(Solid State Disk)用固态电子存储芯片阵列而制成的硬盘。接口规范和定义、功能及使用方法上与普通硬盘的完全相同,在产品外形和尺寸上也完全与普通硬盘一致。普遍采用SATA-2接口及SATA-3接口,最大容量128GB,理论最高速度6Gb/s。 从2001年推出SATA 1.0到目前的SATA2.0和SATA3.0,已经让SATA成为目前机械硬盘的接口,当前也是主流固态硬盘的主要接口。就目前的使用率来说,SATA2.0用户仍然最多,这主要受到PC接口的影响,不过目前市场上的SATA3.0产品,大多都可以向下兼容2.0。虽然现阶段SATA接口的SSD以SATA 2.0为主流,SATA 3.0占比较低,但其每秒高达600MB的传输速率,注定将成为SSD未来接口趋势。

在服务器环境中,我们常使用盘阵作为存储,接口基本上使用的是FC接口;硬盘嘛,SATA的有,SAS-NL的有,SAS的有,光纤接口硬盘的也有。交换设备基本都是光纤或千兆网(包括万兆)设备,服务器自然也配有光纤卡(HBA),从应用层认到的存储设备多为SCSI卷。

热心网友 时间:2022-04-12 01:18

硬件资料与知识大全(牛精)
特提供分享。
目录:
第一 部分 关于硬盘
第二 部分 关于主板
第三 部分 关于显示器
第四 部分 关于显卡
第五 部分 关于内存
第六 部分 关于光驱刻录机
第七 部分 关于机箱电源风扇
第八 部分 关于DIY知识。。
第九 部分 关于CPU
第一○部分 关于BIOS 系统 超频



此文献给所以的硬件技术初学者

我也是从一个超级硬件菜鸟走过来的,那时我还不上网(当然也不知道什么计算机硬件论坛),身边也没有什么硬件老鸟,所有的问题都要自己思考,所以为此也走了不少弯路,不过坚持过来的原因只是对计算机硬件的兴趣,仅此而已!
现在,你们接触到老鸟的机会应该很多吧,有了问题还能到论坛里来提问,至少你们不用像我们那时候走那么多弯路!
我觉得学计算机应该先硬后软(呵呵,个人意见),而学习硬件应该先从理论开始(废话). 推荐刊物:微型计算机(半月刊)! 对于初学者来说,这一本就已经足够了(只怕你消化不了这么多东西),先尝试一个月,如果觉得看不太懂,微型计算机每年都会有精华本,通常精华本的内容更基础,可以尝试一下!
我把计算机硬件的学习分为了几个阶段:
1).了解计算机硬件各部件的用途
2).试着详细了解5~6年前计算机硬件的发展和这段时期中各硬件大厂的经典之作
3).掌握计算机硬件维修的基本技术和技巧,养成对遇到的新问题思考的习惯,从而从中积累经验
4).达到3)的一.两年后,这时已经是经验丰富,解决起一般的硬件故障时,已是游刃有余,可以说是信手拈来!
5).看的懂硬件板卡的大致电气走线,一眼就能分辩卡板做工好坏,单凭一个万用表,一把电烙铁,一盒计算机硬件板卡常用电气元件,就能维修板卡的电气故障(当然,这个故障当然是可修复的,如果拿块男北桥击穿的板子给我,我也没办法修,换芯片组需要热风焊,穷啊,没这设备)

呵呵,我总结下来就这几种了,不过我也知道不是很详细,阁下达到了第几阶段拉?最后有句真心话要对大家说:既然选择了硬件,就请不要放弃,开头是很难,坚持就要看你自己了,如果到了一定时候觉得自己的技术解决常见的故障没问题了,有信心(有空)的话可以到电脑城去做技术,几个月下来你就能提高很多!
记住:计算机硬件并不难学,靠的只是认真和恒心

提问的智慧
技术的提高,并不是因为提问,而是因为提问之前(后)思考,当一个问题已经超出你能力所能解决的范围时,再考虑提问! 当然大家提出的所有问题我们都会尽力解答!
希望大家在这里能学到真正属于自己的技术

第一部分:关于硬盘
关于硬盘的一切(结构-发展-参数-维护-修复)

目录
一:浅谈硬盘发展史
二:硬盘“空间”与“文件大小”秘密
三:新手学堂之看图识硬盘
四:跳出硬盘认识的误区/ 硬盘修复之低级格式化 /深入了解硬盘参数
五:硬盘低级格式化全攻略(@)
六:硬盘常见参数讲解与常见误区
七:硬盘基本知识
八:硬盘的结构
九:看图轻松学会硬盘安装方法
十:厂家维修硬盘的方法
十一:硬盘分区格式简介(@)
十二:第三方软件的修复原理
十三:学会三招恢复硬盘活力
十四:硬盘使用误区点点通
十五:预防软件引发硬盘六大“硬伤”
十六:害怕BT伤硬盘的都进来看看(@)
十七:硬盘出现坏道后的解决办法
十八:Windows系统中如何修复磁盘坏道
十九:硬盘软故障的检查办法
二十:十大硬盘故障解决办法
二十一:十分钟学会判断硬件故障问题
二十二:挑战故障 硬盘故障软件(补)
二十三:硬盘的DOS管理结构(经典)(@)
二十四:硬盘数据恢复实例全解(经典) (@)
二十五:硬盘软故障完全修复方法(@)
二十六:硬盘故障修复数据技巧(@)
二十七:硬盘长寿的奥秘 使用维护十五招(@)
二十八:使用移动硬盘过程中的常见问题(@)
二十九:让硬盘永远工作在最佳状态的小技巧(@)
三十:详谈SCSI硬盘(@)
三十一:主流服务器硬盘技术介绍(@)
三十二:高性能服务器硬盘选购技巧(@)
三十三:服务器数据存储 主流磁盘接口详解(@)
三十四:低端服务器选择单SCSI还是IDE磁盘阵列(@)
三十五:全面认识磁盘阵列柜性能(@)
三十六:SCSI硬盘的关键技术点详解(@)
三十七:SCSI RAID与IDE RAID性能对比说明(@)
三十八:串口(SATA)硬盘如何使用GHOST(@)

三十九:并行与串行的争斗 网络磁盘存储技术(@)
四十:大容量硬盘应用实战串串烧(@)
四十一:剖开硬盘认识组件(@)
四十二:全球首款垂直记录技术!希捷160G笔记本硬盘(@)

一:浅谈硬盘发展史

既然是说长道短“闲话”硬盘,那么就先让我们回顾一下硬盘发展的历程吧。大家都知道,目前占主流的硬盘接口有IDE和SCSI两种,?那么这两种接口又是如何诞生的呢?二者之中历史资历更深的是SCSI(Small?ComputerSystem Interface,小型计算机系统接口),它的前身是1979年由美国的Shugart公司(希捷的前身)制订、并于1986年获得ANSI(美国标准协会)承认的SASI(Shugart?Associates?System?Interface,施加特联合系统接口)。而IDE(Integrated?Drive?Electronics,集成设备电路)则源于CDC(Control?Data?Corporation,数据控制公司)、康柏(COMPAQ)、西部数据(Western?Digital,以下简称WD)共同开发的磁盘控制接口,?并于19年由ANSI认可为ATA(AT?Attachment,AT附加装置)标准。CDC的特点是不需大量追加设备即可构成电脑方的主控线路,?这也正是它在个人电脑上得到广泛应用的原因。
早期的硬盘容量不过10MB到数十MB,甚至连今天的内存容量都不如而且价格极其昂贵,很少有个人用户有幸拥有硬盘。当时的硬盘所采用的磁头大多是高铁酸盐磁头或MIG(MetalIn?Gap,金属隔离)磁头。进入90年代以来,硬盘技术有了长足的发展,随着新技术的不断应用和批量生产带来的成本降低导致硬盘零售价大幅下降,使越来越多的个人用户有幸接触到硬盘。
在90年代初,SCSI接口发展为SCSI-2,早期的SCSI-2产品(通称Fast? SCSI)?通过提高同步传输时的频率使数据传输速率提高为10MB/s,后来又出现了支持16位并行数据传输(?原本为8位并行数据传输)的Wide?SCSI,将数据传输率再提高为20MB/s。?与此相对应,原有的8位传输的SCSI被称为Narrow?SCSI。而在1994年,?增强型的IDE接口E-IDE(Enhanced?IDE)也问世了,?它解决了IDE接口无法支持高于528MB的硬盘的问题并使一个接口能同时连接两个设备,还大大提高了数据传输率。E-IDE由ANSI认可为ATA-2。与此同时,用于连接光驱、磁带机等非硬盘设备ATAPI(ATA? PacketInterface)接口也诞生了。可以说,正是E-IDE接口的诞生,带来了今天IDE接口存储设备的普及。
到了1995年,更为高速的SCSI接口SCSI-3诞生了。SCSI-3俗称UltraSCSI(数据传输率20MB/s),其正式的称谓是SCSI-3?Fast-20?ParallelInterface。顾名思义,就是将同步传输时钟频率提高到20MHz以提高数据传输率的技术。当使用16位传输的Wide模式时,数据传输率更可以提高至40MB/s。正是在这个时期,“追求高性能惟有挑选SCSI”逐渐成为一种思维定式(当然SCSI的好处不仅仅在于数据传输率快这么简单)。
但到了1997年,状况又有了改变,IDE阵营推出了Ultra?ATA规格展开新一轮对抗。当使用Ultra?ATA?DMA?Mode?2(俗称Ultra?DMA/33)模式时,数据传输率最高可以达到33.3MB/s。这一速度比Narrow传输模式下的UltraSCSI还要快。现在
流通的IDE硬盘已经全部对应了Ultra?ATA模式。并且,随着硬盘的容量越来越大,速度越来越快,MR(Magneto-Resistive,?磁阻型)磁头和提高磁盘记录密度的新规格得以普及。
为了对抗Ultra?ATA,SCSI阵营也于1997年推出了新的Ultra?2?SCSI规格(Fast-40),目前已有多种SCSI硬盘支持Ultra?2?SCSI。?不过,采用LVD(Low?Voltage?Differential,低电压微分)传输的Ultra?2?SCSI难以与原有低速设备兼容,因此现阶段个人用户主要使用的故荱ltra(Wide)SCSI。
另外,在1998年9月,更为高速的数据传输率高达160MB/s的Ultra160/m?SCSI(Wide模式下的Fast-80)规格正式公布,新一代SCSI硬盘将对应这一最新的硬盘接口。
在IDE阵营方面,1998年2月由昆腾(Quantum)公司牵头推出了支持66MB/s数据传输率的Ultra?ATA?/66标准。尽管支持它的控制芯片组迟迟未见问世(现在已经有SIS的兼容芯片出现),WD已经于去年12月率先推出了支持Ultra?ATA/66的硬盘产品,不过产品在出厂时将Ultra?ATA/66模式设为Disable,用户想要激活这一模式必须使用专用的工具软件设定(当时并没有支持Ultra?ATA/66的主板,所以这一措施可谓妥当)。现在昆腾、IBM等也已经先后推出了支持Ultra?ATA/66的最新产品.

二:硬盘“空间”与“文件大小”秘密

在Windows系统中,一个文件的大小(字节数)和它在硬盘上(或其他存储介质上)所占的空间是两个既相互联系又有区别的概念。在不同的情况下,同一个文件的“所占空间”会发生变化。
1.“文件大小”与“所占空间”的差别
为了便于大家理解,我们先来看两个例子:
例1:找到D盘上的Ersave2.dat文件,用鼠标右键单击该文件,选择“属性”,即可打开对话框,我们可以看到,Ersave2.dat的实际大小为655,628 Byte(字节),但它所占用的空间却为688,128 Byte,两者整整相差了32KB。
例2:同样是该文件,如果将它复制到A盘,你会发现该文件实际大小和所占空间基本一致,同为0KB,但字节数稍有差别。再将它复制到C盘,查看其属性后,你会惊奇地发现它的大小和所占空间的差别又不相同了!
显然,在这三种情况中,文件的实际大小没有变化,但在不同的磁盘上它所占的空间却都有变化。事实上,只要我们理解了文件在磁盘上的存储机制后,就不难理解上述的三种情况了。文件的大小其实就是文件内容实际具有的字节数,它以Byte为衡量单位,只要文件内容和格式不发生变化,文件大小就不会发生变化。但文件在磁盘上的所占空间却不是以Byte为衡量单位的,它最小的计量单位是“簇(Cluster)”。
小知识:什么是簇?
文件系统是操作系统与驱动器之间的接口,当操作系统请求从硬盘里读取一个文件时,会请求相应的文件系统(FAT 16/32/NTFS)打开文件。扇区是磁盘最小的物理存储单元,但由于操作系统无法对数目众多的扇区进行寻址,所以操作系统就将相邻的扇区组合在一起,形成一个簇,然后再对簇进行管理。每个簇可以包括2、4、8、16、32或个扇区。显然,簇是操作系统所使用的逻辑概念,而非磁盘的物理特性。
为了更好地管理磁盘空间和更高效地从硬盘读取数据,操作系统规定一个簇中只能放置一个文件的内容,因此文件所占用的空间,只能是簇的整数倍;而如果文件实际大小小于一簇,它也要占一簇的空间。所以,一般情况下文件所占空间要略大于文件的实际大小,只有在少数情况下,即文件的实际大小恰好是簇的整数倍时,文件的实际大小才会与所占空间完全一致。
2.分区格式与簇大小
在例2中,同一个文件在不同磁盘分区上所占的空间不一样大小,这是由于不同磁盘簇的大小不一样导致的。簇的大小主要由磁盘的分区格式和容量大小来决定,其对应关系如表1所示。
笔者的软盘采用FAT分区,容量1.44MB,簇大小为512 Byte(一个扇区);C盘采用FAT 32分区,容量为4.87GB,簇大小为8KB;D盘采用FAT 32分区,容量为32.3GB,簇大小为32KB。计算文件所占空间时,可以用如下公式:
簇数=取整(文件大小/簇大小)+1
所占空间=簇数×磁盘簇大小
公式中文件大小和簇大小应以Byte为单位,否则可能会产生误差。如果要以KB为单位,将字节数除以1024即可。利用上述的计算公式,可以计算ersave2.dat文件的实际占用空间,如表2所示。
3.轻松查看簇大小
①用Chkdsk查看簇大小
在Windows操作系统中,我们可以使用Chkdsk命令查看硬盘分区的簇大小。例如我们要在Windows XP下查看C盘的簇大小,可以单击“开始→运行”,键入“CMD”后回车,再键入“C:”后回车,然后输入“Chkdsk”后回车,稍候片刻从它的分析结果中,我们就可以得到C盘的簇大小,不过它把簇称之为“分配单元”或者“Allocation unit”。
②用PQ Magic等磁盘工具来检测
很多磁盘工具都具备磁盘信息显示等功能。例如在PQ Magic中,选择要查看的磁盘分区,然后单击右键选择“高级→调整簇大小”功能,即可从显示的对话框中可以看到该磁盘当前设置的簇大小。
③手工查看
手动创建一个100字节以下的文本文档。然后将该文件复制到欲查看簇大小的磁盘分区中,在Windows下显示该文件的属性,其中“所占空间”处显示的数值就是簇大小。

三:新手学堂之看图识硬盘

硬盘是系统中极为重要的设备,存储着大量的用户资料和信息。如今的硬盘容量动辄就是10GB以上,型号更是五花八门,因此我们有必要了解一些硬盘的基本知识,才能在纷繁复杂的市场中认清所需要的硬盘。从接口上看,硬盘主要分为IDE接口和SCSI接口两种。由于价格原因,普通用户通常只能接触到IDE接口的硬盘,因此下面我们也以IDE硬盘为主进行讲解。
1.缓存 这就是我们经常说的缓存,其实就和内存条上的内存颗粒一样,是一片SDRAM。缓存的作用主要是和硬盘内部交换数据,我们平时所说的内部传输率其实也就是缓存和硬盘内部之间的数据传输速率。
2.电源接口 和光驱一样,硬盘的电源接口也是由4针组成。其中,红线所对应的+5V电压输入,黄线对应输出的是+12V电压。现在的硬盘电源接口都是梯形,不会因为插反方向而使硬盘烧毁。
3.跳线 跳线的作用是使IDE设备在工作时能够一致。当一个IDE接口上接两个设备时,就需要设置跳线为“主盘”或者“从盘”,具体的设置可以参考硬盘上的说明。
4.IDE接口 硬盘IDE接口是和主板IDE接口进行数据交换的通道。我们通常说的UDMA/33模式就是指的缓存和主板IDE接口之间的数据传输率(也就是外部数据传输率)为33.3MB/s,目前的接口规范已经从UDMA/33发展到UDMA/66和UDMA/100。但是由于内部传输率的*,实际上外部传输率达不到理论上的那么高。
为了使数据传输更加可靠,UDMA/66模式要求使用80针的数据传输线,增加接地功能,使得高速传输的数据不致出错。在UDMA/66线的使用中还要注意,其兰色的一端要接在主板IDE口上,而黑色的一端接在硬盘上。
5.电容 硬盘存储了大量的数据,为了保证数据传输时的安全,需要高质量的电容使电路稳定。这种*的钽电容质量稳定,属于优质元件,但价格较贵,所以一般用量都比较少,只是在最需要的地方才使用。
6.控制芯片 硬盘的主要控制芯片,负责数据的交换和处理,是硬盘的核心部件之一。硬盘的电路板可以互相换(当然要同型号的),在硬盘不能读出数据的时候,只要硬盘本身没有物理损坏且能够加电,我们就可以通过更换电路板的方式来使硬盘“起死回生”。

四:跳出硬盘认识的误区/ 硬盘修复之低级格式化 /深入了解硬盘参数

1.硬盘逻辑坏道可以修复,而物理坏道不可修复。实际情况是,坏道并不分为逻辑坏道和物理坏道,不知道谁发明这两个概念,反正厂家提供的技术资料中都没有这样的概念,倒是分为按逻辑地址记录的坏扇区和按物理地址记录的坏扇区。
2.硬盘出厂时没有坏道,用户发现坏道就意味着硬盘进入危险状态。实际情况是,每个硬盘出厂前都记录有一定数量的坏道,有些数量甚至达到数千上万个坏扇区,相比之下,用户发现一两个坏道算多大危险?
3.硬盘不认盘就没救,0磁道坏可以用分区方法来解决。实际情况是,有相当部分不认的硬盘也可以修好,而0磁道坏时很难分区。
Bad sector (坏扇区)
在硬盘中无法被正常访问或不能被正确读写的扇区都称为Bad sector。一个扇区能存储512Bytes的数据,如果在某个扇区中有任何一个字节不能被正确读写,则这个扇区为Bad sector。除了存储512Bytes外,每个扇区还有数十个Bytes信息,包括标识(ID)、校验值和其它信息。这些信息任何一个字节出错都会导致该扇区变“Bad”。例如,在低级格式化的过程中每个扇区都分配有一个编号,写在ID中。如果ID部分出错就会导致这个扇区无法被访问到,则这个扇区属于Bad sector。有一些Bad sector能够通过低级格式化重写这些信息来纠正。

Bad cluster (坏簇)
在用户对硬盘分区并进行高级格式化后,每个区都会建立文件分配表(File Allocation Table, FAT)。FAT中记录有该区内所有cluster(簇)的使用情况和相互的链接关系。如果在高级格式化(或工具软件的扫描)过程中发现某个cluster使用的扇区包括有坏扇区,则在FAT中记录该cluster为Bad cluster,并在以后存放文件时不再使用该cluster,以避免数据丢失。有时病毒或恶意软件也可能在FAT中将无坏扇区的正常cluster标记为Bad cluster, 导致正常cluster不能被使用。 这里需要强调的是,每个cluster包括若干个扇区,只要其中存在一个坏扇区,则整个cluster中的其余扇区都一起不再被使用.
Defect (缺陷)
在硬盘内部中所有存在缺陷的部分都被称为Defect。 如果某个磁头状态不好,则这个磁头为Defect head。 如果盘面上某个Track(磁道)不能被正常访问,则这Track为Defect Track. 如果某个扇区不能被正常访问或不能正确记录数据,则
该扇区也称为Defect Sector. 可以认为Bad sector 等同于 Defect sector. 从总的来说,某个硬盘只要有一部分存在缺陷,就称这个硬盘为Defect hard disk.
P-list (永久缺陷表)
现在的硬盘密度越来越高,单张盘片上存储的数据量超过40Gbytes. 硬盘厂
家在生产盘片过程极其精密,但也极难做到100%的完美,硬盘盘面上或多或少存在一些缺陷。厂家在硬盘出厂前把所有的硬盘都进行低级格式化,在低级格式化过程中将自动找出所有defect track和defect sector,记录在P-list中。并且在对所有磁道和扇区的编号过程中,将skip(跳过)这些缺陷部分,让用户永远不能用到它们。这样,用户在分区、格式化、检查刚购买的新硬盘时,很难发现有问题。一般的硬盘都在P-list中记录有一定数量的defect, 少则数百,多则数以万计。如果是SCSI硬盘的话可以找到多种通用软件查看到P-list,因为各种牌子的SCSI硬盘使用兼容的SCSI指令集。而不同牌子不同型号的IDE硬盘,使用各自不同的指令集,想查看其P-list要用针对性的专业软件。

G-list (增长缺陷表)
用户在使用硬盘过程中,有可能会发现一些新的defect sector。 按“三包”规定,只要出现一个defect sector,商家就应该为用户换或修。现在大容量的硬盘出现一个defect sector概率实在很大,这样的话硬盘商家就要为售后服务忙碌不已了。于是,硬盘厂商设计了一个自动修复机制,叫做Automatic Reallcation。有大多数型号的硬盘都有这样的功能:在对硬盘的读写过程中,如果发现一个defect sector,则自动分配一个备用扇区替换该扇区,并将该扇区及其替换情况记录在G-list中。这样一来,少量的defect sector对用户的使用没有太大的影响。
也有一些硬盘自动修复机制的激发条件要严格一些,需要用某些软件来判断defect sector,并通过某个端口(据说是50h)调用自动修复机制。比如常用的Lformat, ADM,DM中的Zero fill,Norton中的Wipeinfo和校正工具,西数工具包中的wddiag, IBM的DFT中的Erase等。这些工具之所以能在运行过后消除了一些“坏道”,很重要的原因就在这Automatic Reallcation(当然还有其它原因),而不能简单地概括这些“坏道”是什么“逻辑坏道”或“假坏道”。 如果哪位被误导中毒太深的读者不相信这个事实,等他找到能查看G-list的专业工具后就知道,这些工具运行过后,G-list将会增加多少记录!“逻辑坏道”或“假坏道”有必要记录在G-list中并用其它扇区替换么?
当然,G-list的记录不会无*,所有的硬盘都会限定在一定数量范围内。如火球系列限度是500,美钻二代的限度是636,西数BB的限度是508,等等。超过限度,Automatic Reallcation就不能再起作用。这就是为何少量的“坏道”可以通过上述工具修复(有人就概括为:“逻辑坏道”可以修复),而坏道多了不能通过这些工具修复(又有人概括为:“物理坏道”不可以修复)。

Bad track (坏道)
这个概念源于十多年前小容量硬盘(100M以下),当时的硬盘在外壳上都贴有一张小表格,上面列出该硬盘中有缺陷的磁道位置(新硬盘也有)。在对这个硬盘进行低级格式化时(如用ADM或DM 5.0等工具,或主板中的低格工具),需要填入这些Bad track的位置, 以便在低格过程中跳过这些磁道。现在的大容量硬盘在结构上与那些小容量硬盘相差极大,这个概念用在大容量硬盘上有点牵强。

深入了解硬盘参数
正常情况下,硬盘在接通电源之后,都要进行“初始化”过程(也可以称为“自检”)。这时,会发出一阵子自检声音,这些声音长短和规律视不同牌子硬盘而各不一样,但同型号的正常硬盘的自检声音是一样的。 有经验的人都知道,这些自检声音是由于硬盘内部的磁头寻道及归位动作而发出的。为什么硬盘刚通电就需要执行这么多动作呢?简单地说,是硬盘在读取的记录在盘片中的初始化参数。
一般熟悉硬盘的人都知道,硬盘有一系列基本参数,包括:牌子、型号、容量、柱面数、磁头数、每磁道扇区数、系列号、缓存大小、转速、S.M.A.R.T值等。其中一部分参数就写在硬盘的标签上,有些则要通过软件才能测出来。这些参数仅仅是初始化参数的一小部分,盘片中记录的初始化参数有数十甚至数百个!硬盘的CPU在通电后自动寻找BIOS中的启动程序,然后根据启动程序的要求,依次在盘片中指定的位置读取相应的参数。如果某一项重要参数找不到或出错,启动程序无法完成启动过程,硬盘就进入保护模式。在保护模式下,用户可能看不到硬盘的型号与容量等参数,或者无法进入任何读写操作。近来有些系列的硬盘就是这个原因而出现类似的通病,如:FUJITSU MPG系列自检声正常却不认盘,MAXTOR美钻系列认不出正确型号及自检后停转,WD BB EB系列能正常认盘却拒绝读写操作等。
不同牌子不同型号的硬盘有不同的初始化参数集,以较熟悉的Fujitsu硬盘为 例,高朋简要地讲解其中一部分参数,以便读者理解内部初始化参数的原理。
通过专用的程序控制硬盘的CPU,根据BIOS程序的需要,依次读出初始化参数集,按模块分别存放为69个不同的文件,文件名也与BIOS程序中调用到的参数名称一致。其中部分参数模块的简要说明如下:
DM硬盘内部的基本管理程序
- PL永久缺陷表
- TS缺陷磁道表
- HS实际物理磁头数及排列顺序
- SM最高级加密状态及密码
- SU用户级加密状态及密码
- CI 硬件信息,包括所用的CPU型号,BIOS版本,磁头种类,磁盘碟片种类等
-

热心网友 时间:2022-04-12 02:36

你的硬盘出什么问题了,你不说该从何说起呀

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com