实数来自根是一个数学术语。实数根就是指方程式的解为况收指山实数,实数根也经常被叫为实根。
实数根简介:
1)根指的是方程的解
实数根就是指方程式的解为实数,实数根也经常被叫为实根。
2)实数包括正数,负数和0
负数来自包括:负整数和负分数难曲,虚数
实数包括:有理数和无理数
有理数包括:整数和分数
无理数包括:正无理数、负无理数
整数来自包括:正整数、0、负整数
分数包括:正分数、负分数
分数的席深第二种分类方法:包括有限小数、无限循环小数
3)有理数:整数和分数统称为有理数。
无理数:无限不循环小数叫做无理数,具体表示方法为√2、√3。
实数根的定来自理:
定理1 : n 次多项式f ( x ) 至多有n 来自个不同的根。
定理2 (笛卡尔符号律):多项式函数f ( x 确常固益而深镇士) 的正实根个数等于f ( x ) 的非来自零系数的符号变化个数,或者等于比该变化个数小一个偶数的数; f ( 标止抓x ) 的负实根个零部德紧究北数等于f ( - x) 的非零系数的符号变化育沉盾个数,或者等于比该训变化个数小一个偶数的数。
定理3:数c 是f 钢( x ) 的根的充分来自必要条件是f ( x ) 能被c 整除。
定理4 : 每个次数大于0 的实系数多来自项式都可以分解为实系数的一次和二次不可约因式的乘积。
定理5 :设(1 ) 式中Pi = 0 ,1 ,*,n , ai ∈ ,即f ( x ) 是整系数多项式,若an ≠0 ,且有理数u/ v是f ( x ) 的一个根, u ∈ , v ∈ * ,( u , v) = 1 ,那么:
(i ) v | a0 , u 来自| an ;
(ii) f ( x ) / ( 来自x - u/ v) 是一个整系数多项式。
定理6 (根的上下界定理) :设(1 ) 式中a0 > 0 ,
1 ) 若存在正实数M ,当用x - M 去对f ( x ) 作综合除法时第三行施传承下歌常友数字仅出现正数或0 ,那么M 就是f ( x ) 的根的一个上界;
2 来自) 若存在不大于0 的实数m ,当用x - m 去对f ( x ) 作综合除法时第三行数字交替地出现正数(或0 ) 和负数(或0 ) 时,那么m 就是f ( x ) 的根的一个善额责抓下界。
定理7 (判断根上下界的牛顿法):设有实数k 来自,使f ( k) , f ′(k) , *,f (m) ( k) , *f (n) ( k) 均为非负数,或均为非正数,则方程f ( x ) = 0 的实根都小于k。这里f (m) ( x ) 表示f ( x ) 的m 阶导数。
定理配盐权8 (判断根上下界的拉格朗日法):设(1 ) 式中a0 > 0 ,且ak 为第一个负系数,即ak < 0 ,且Pi < k , ai ≥0 , 设b 是负系数中的最大绝来自对值,则f ( x ) = 0 的正根上限为1 +kb/ a0 。
定来自理9 :多项式f ( x ) 无重根的充分且必要条件是f ( x ) 与它的导数f ′( x ) 互素。
定理1来自0 (Sturm 定理):设多项式f ( x ) 无重根,b1 < b2 , f 血边发烟(b1 ) f (b2 ) ≠0 , f ( x ) = 0 在开区间织(b1 ,b2 ) 中有p 个根,U (b1 ) 与U (b2 ) 分别为f ( x ) 的斯图姆(St urm) 序列f 0 (b1 ) , f 1 (b1 ) , *,f s (b1 曾映则) , *,f m (b协季响1 )与f 0 (b2 ) , f 1 (b2 ) , *,f s (b2 ) , *,f m (b2 )的变号的个数,则p = U (b1 ) - U (b溶帮血转针守它升2 ) 。
数学中的实数根是什么意思
实数来自根是一个数学术语。实数根就是指方程式的解为实数,实数根也经常被叫为实根。
实数根简介:
1)根指的是方程的解
实数根就是指方程式的解为实娘发法响汽选医耐数,实数根也色云接注委即看经常被叫为乱石值头青略实根。
2)实数包括正数,负数和0
负数包括:负整数和负分数,虚数
实数来自包括:有理数和无理数
有理数包括:整数和分数
无理数包括:正无理数、负无理数