在此我要感谢一年来一直帮助我、关心我的老教师们。从他们的经验中我体会到数学的核心——问题;总结出解决问题的途径——问的是什么、有什么、还有什么、是什么;教会学生如何去学习—勤于思考、善于提问、解决问题。
数学问题成为数学教学创新的载体。
1.在引入新概念时,把相关的旧概念联系起来,确立信任学生的观念,大胆放手让学生把某种情境用数学方法加以表征;在形成概念时,留给学生充足的思维空间,多角度、全方位地提出有价值的问题,让学生思考;指导学生自主地建构新概念。在辨识概念时,鼓励学生质疑。宋代有一位教育家说过:“读书无疑者,须教有疑。有疑者却要无疑,到这里方是长进。”从学生的角度看,学贵有疑是学习进步的标志,也是创新的开始。
2.在学习数学定理、公式、方法时,离不开对命题的证明,应当改变传统的分为“展示定理、推证定理、应用定理”简单三步的模式,而结合实际情况,在证明命题前为学生创设认知冲突的疑惑情境。经过一段训练后,学生便能清楚什么是数学证明,什么不是。并且知道数学证明的价值及其局限性。
3.在解题教学时,改变传统的解题训练多而杂的做法。加强目的性,注意渗透解题策略。因为策略往往是不容易为学生掌握的。注意解题训练的坡度和难度。如果解题训练有一个坡度,可以使学生循序渐进从易到难,完成一个小题,相当上了一个台阶,完成了最后一题,好像登上了山顶,回首俯望,小山连绵,喜悦之心,不禁而生。如果题组没有难度,学生不可能有疑,重重复复会令人乏味。反之,设置一定陷阱、难度,学生经过探索、推敲,把疑难解决了,既巩固了基础,又实现了从有疑到无疑的飞跃,体验到解题的劳动价值。
因篇幅问题不能全部显示,请点此查看更多更全内容