图像识别技术-神经网络识别方法的分析
作者:胡菡静 王小妮 王磊 李翠 来源:《中国新通信》2016年第22期
【摘要】 图像识别技术的方法主要分为统计模式识别方法、句法模式识别方法、模糊模式识别方法以及神经网络识别方法,本文在概述图像识别基本概念及基本技术的基础上,着重对图像识别中神经网络识别方法进行分析。 【关键词】 图像识别技术 神经网络识别
模式识别研究的目的是用机器来模拟人的各种识别能力—比如说模拟人的视觉与听觉能力,因此图像识别的目的是对文字、图像、图片、景物等模式信息加以处理和识别,以解决计算机与外部环境直接通信这一问题。可以说,图像识别的研究目标是为机器配置视觉“器官”,让机器具有视觉能力,以便直接接受外界的各种视觉信息。 一、图像识别系统
一个图像识别系统可分为四个主要部分:被识图像、图像信息获取、图像预处理、图像特征提取、分类判决。 二、图像识别方法
图像识别的方法很多,可概括为统计(或决策理论)模式识别方法、句法(或结构)模式识别方法、模糊模式识别方法以及神经网络识别方法。重点介绍神经网络识别方法。 2.1神经网络识别方法 2.1.1人工神经网络的组成
人工神经网络(简称ANN)是由大量处理单元经广泛互连而组成的人工网络,用来模拟脑神经系统的结构和功能。而这些处理单元我们把它称作人工神经元。 2.1.2人工神经网络的输出
龙源期刊网 http://www.qikan.com.cn
2.1.3人工神经网络的结构
人工神经网络中,各神经元的不同连接方式就构成了网络的不同连接模型。常见的连接模型有:前向网络、从输入层到输出层有反馈的网络、层内有互联的网络及互联网络。 2.1.4 学习算法
1)感知器模型及其算法
算法思想:首先把连接权和阈值初始化为较小的非零随机数,然后把有n个连接权值的输入送入网络中,经加权运算处理后,得到一个输出,如果输出与所期望的有较大的差别,就对连接权值参数按照某种算法进行自动调整,经过多次反复,直到所得到的输出与所期望的输出间的差别满足要求为止。 2)反向传播模型及其算法
反向传播模型也称B-P模型,是一种用于前向多层的反向传播学习算法。
算法思想是:B-P算法的学习目的是对网络的连接权值进行调整,使得调整后的网络对任一输入都能得到所期望的输出。学习过程包括正向传播和反向传播。正向传播用于对前向网络进行计算,即对某一输入信息,经过网络计算后求出它的输出结果;反向传播用于逐层传递误差,修改神经元之间的连接权值,使网络最终得到的输出能够达到期望的误差要求。 B-P算法的学习过程如下:
第一步:选择一组训练样例,每一个样例由输入信息和期望的输出结果两部分组成;第二步:从训练样例集中取出一样例,把输入信息输入到网络中;第三步:分别计算经神经元处理后的各层节点的输出;第四步:计算网络的实际输出和期望输出的误差;第五步:从输出层反
龙源期刊网 http://www.qikan.com.cn
向计算到第一个隐层,并按照某种原则(能使误差向减小方向发展),调整网络中各神经元的权值;第六步:对训练样例集中的每一个样例重复一到五的步骤,直到误差达到要求时为止。 3)Hopfield模型及其学习算法
它是一种反馈型的神经网络,在反馈网络中,网络的输出要反复地作为输入再送入网络中,使得网络具有了动态性,因此网络的状态在不断的改变之中。 算法思想是: (a) 设置互连权值
其中xis是s类样例的第i个分量,它可以为1或0,样例类别数为m,节点数为n。 (b) 未知类别样本初始化。 Yi(0)=Xi 0≤i≤n-1
其中Yi(t)为节点I在t时刻的输出,当t=0时,Yi(0)就是节点I的初始值,Xi为输入样本的第I个分量。 (c) 迭代直到收敛
f为阈值型激发函数。该过程一直迭代到不再改变节点的输出为止。这时各节点的输出与输入样例达到最佳匹配。
总结:每一种识别方法都有自己的优缺点,我们在今后的工作中需要把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应用的可能性,互相取长补短,开创模式识别应用的新局面。
因篇幅问题不能全部显示,请点此查看更多更全内容