LM2633
AdvancedTwo-PhaseSynchronousTripleRegulatorControllerforNotebookCPUs
GeneralDescription
TheLM2633isafeature-richICthatcombinesthreeregu-latorcontrollers-twocurrentmodesynchronousbuckregu-latorcontrollersandalinearregulatorcontroller.
Thetwoswitchingregulatorcontrollersoperate180˚outofphase.ThisfeaturereducestheinputrippleRMScurrent,resultinginasmallerinputfilter.
Thefirstswitchingcontroller(Channel1)featuresanIntelmobileCPUcompatibleprecision5-bitdigital-to-analogcon-verterwhichprogramstheoutputvoltagefrom0.925Vto2.00V.ItisalsocompatiblewiththedynamicVIDrequire-ments.Thesecondswitchingcontroller(Channel2)isad-justablebetween1.25Vto6.0V.
Useofsynchronousrectificationandpulse-skipoperationatlightloadachieveshighefficiencyoverawideloadrange.Fixed-frequencyoperationcanbeobtainedbydisablingthepulse-skipmode.
Current-modefeedbackcontrolassuresexcellentlineandloadregulationandawideloopbandwidthforgoodre-sponsetofastloadtransientevents.CurrentmodecontrolisachievedthroughsensingtheVdsofthetopFETandthusanexternalsenseresistorisnotnecessary.
Apowergoodsignalisavailabletoindicatethegeneralhealthoftheoutputvoltages.
Auniquefeatureistheanalogsoft-startfortheswitchingcontrollersisindependentoftheslewrateoftheinputvolt-age.Thiswillmakethesoftstartbehaviormorepredictableandcontrollable.Aninternal5Vrailisavailableexternallyforboot-strapcircuitry(only)whenno5Visavailablefromothersources.
CurrentlimitforeitherofthetwoswitchingchannelsisachievedthroughsensingthetopFETVDSandthevalueisadjustable.Thetwoswitchingcontrollershaveunder-voltageandover-voltagelatchprotections,andthelinearregulatorhasunder-voltagelatchprotection.Under-voltagelatchcanbedisabledordelayedbyaprogrammableamountoftime.Theinputvoltagefortheswitchingchannelsrangesfrom5Vto30V,whichmakespossiblethechoiceofdifferentbatterychemistriesandoptions.
Features
GENERAL
nThreeregulatedoutputvoltagesn4.5Vto30VinputrangenPowergoodfunction
nInputunder-voltagelockoutnThermalshutdownnTinyTSSOPpackage
SWITCHINGSECTION
nTwochannelsoperating180˚outofphasenSeparateon/offcontrolforeachchannelnCurrentmodecontrolwithoutsenseresistornSkip-modeoperationavailable
nAdjustablecycle-by-cyclecurrentlimitnNegativecurrentlimit
nAnalogsoftstartindependentofinputvoltageslewratenPowergroundpinsseparatenOutputUVPandOVP
nProgrammableoutputUVPdelay
n250kHzswitchingfrequency(forVin<17V)nChannel1outputfrom0.925Vto2.00Vn±1.5%DACaccuracyfrom0˚Cto125˚Cn±1.7%initialtoleranceforChannel2nDynamicVIDchangereadynPowergoodflagsVIDchanges
nChannel2outputfrom1.3Vto6.0VLINEARSECTION
nOutputvoltageadjustable
n50mAmaximumdrivingcurrentnOutputUVP
n±2%initialtolerance
Applications
nPowersupplyforCPUsofnotebookPCsthatrequiretheSpeedStep™technique
nPowersupplyforinformationappliancesnGenerallowvoltageDC/DCbuckregulators
SpeedStep™isatrademarkofIntelCorporation.
©2001NationalSemiconductorCorporationDS200008www.national.com
LM2633ConnectionDiagram
TOPVIEW
PGOOD(Pin13)::Aconstantmonitorontheoutputvolt-ages.Itindicatesthegeneralhealthoftheregulators.Formoreinformation,seePowerGoodTruthTable(Table2)andPowerGoodFunctioninOperationDescriptions.GND(Pin16-17):Low-noiseanalogground.
G3(Pin18):Connecttothebaseorgateofthelinearregulatorpasstransistor.
OUT3(Pin19):Connecttotheoutputofthelinearregulator.FB3(Pin21):Thefeedbackinputforthelinearregulator,connectedtothecenteroftheexternalresistordivider.
COMP2(Pin22):Channel2compensationnetworkconnec-tion(it’stheoutputofthevoltageerroramplifier).
FB2(Pin23):ThefeedbackinputforChannel2.Connecttothecenteroftheoutputresistordivider.
SENSE2(Pin24):RemotesensepinofChannel2.Thispinisusedforskip-modeoperation.
ILIM2(Pin25):CurrentlimitthresholdsettingforChannel2.Itsinksataconstant10µAcurrent.AresistorisconnectedbetweenthispinandthetopMOSFETdrain.ThevoltageacrossthisresistoriscomparedwiththeVDSofthetopMOSFETtodetermineifanover-currentconditionhasoc-curredinChannel2.
KS2(Pin27):TheKelvinsenseforthedrainofthetopMOSFETofChannel2.
SW2(Pin29):Switch-nodeconnectionforChannel2,whichisconnectedtothesourceofthetopMOSFET.
HDRV2(Pin30):Topgate-driveoutputforChannel2.HDRV2isafloatingdriveoutputthatridesonSW2voltage.CBOOT2(Pin31):BootstrapcapacitorconnectionforChan-nel2topgatedrive.ItisthepositivesupplyrailforChannel2topgatedrive.
VDD2(Pin32):ThesupplyrailforChannel2bottomgatedrive.
LDRV2(Pin33):Bottomgate-driveoutputforChannel2.PGND2(Pin34):PowergroundforChannel2.VIN(Pin35):Theregulatorinputvoltagesupply.
VLIN5(Pin36):Theoutputoftheinternal5Vlinearregula-tor.Bypasstothegroundwitha1UFceramiccapacitor.Whenregulatorinputvoltageis5V,thispincanbetiedtoVINpintoimprovelight-loadefficiency.
PGND1(Pin38-39):PowergroundforChannel1.
LDRV1(Pin40-41):Bottomgate-driveoutputforChannel1.VDD1(Pin42):ThesupplyrailfortheChannel1bottomgatedrive.
CBOOT1(Pin43):BootstrapcapacitorconnectionforChan-nel1topgatedrive.ItisthepositivesupplyrailforChannel1topgatedrive.
HDRV1(Pin44):Topgate-driveoutputforChannel1.HDRV1isafloatingdriveoutputthatridesonSW1voltage.SW1(Pin45):Switch-nodeconnectionforChannel1,whichisconnectedtothesourceofthetopMOSFET.
KS1(Pin46):TheKelvinsenseforthedrainofthetopMOSFETofChannel1.
ILIM1(Pin48):CurrentlimitthresholdsettingforChannel1.Itsinksataconstant10µAcurrent.AresistorisconnectedbetweenthispinandthetopMOSFETdrain.ThevoltageacrossthisresistoriscomparedwiththeVDSofthetopMOSFETtodetermineifanover-currentconditionhasoc-curredinChannel1.
20000801
48-LeadTSSOP(MTD)OrderNumberLM2633MTDSeeNSPackageNumberMTD48
PinDescriptions
FB1(Pin1):ThefeedbackinputforChannel1.Connecttotheloaddirectly.
COMP1(Pin2):Channel1compensationnetworkconnec-tion(connectedtotheoutputofthevoltageerroramplifier).NC(Pins3,14,15,20,26,28,37and47):Nointernalconnection.
ON/SS1(Pin4):Addingacapacitortothispinprovidesasoft-startfunctionwhichminimizesinrushcurrentandoutputvoltageovershoot;Alowerthan0.8Vinput(open-collectortype)atthispinturnsoffChannel1;alsoifbothON/SS1andON/SS2pinsarebelow0.8V,thewholeICgoesintoshutdownmode.Thesoft-startcapacitorvoltagewilleventuallybechargedtoVINor6V,whicheverislower.
ON/SS2(Pin5):Addingacapacitortothispinprovidesasoft-startfunctionwhichminimizesinrushcurrentandoutputvoltageovershoot;Alowerthan0.8Vinput(open-collectortype)atthispinturnsoffChannel2;alsoifbothON/SS1andON/SS2pinsarebelow0.8V,thewholeICgoesintoshutdownmode.Thesoft-startcapacitorvoltagewilleventuallybechargedtoVINor6V,whicheverislower.
VID4-0(Pins6-10):Voltageidentificationcode.Eachpinhasaninternalpull-up.Theycanacceptopencollectorcompatible5-bitbinarycodefromtheCPU.ThecodetableisshowninTable3.
UV_DELAY(Pin11):Acapacitorfromthispintogroundadjuststhedelayfortheoutputunder-voltagelockout.
FPWM(Pin12):WhenFPWMislow,pulse-skipmodeop-erationatlightloadisdisabled.Theregulatorisforcedtooperateinconstantfrequencymode.
www.national.com2
BlockDiagramsLM26333
20000802www.national.com
LM2633www.national.com
20000886BlockDiagrams(Continued)4
BlockDiagrams(Continued)LM26335
20000803www.national.com
LM2633TABLE1.ShutDownLatchTruthTable
Input
ovp11
1
1
1
1
Σ=1
Allothercombinations
Note1:’Σ=1’meansatleastonevariableishigh.
Note2:’Fault’isthelogicORofUVLOandthermalshutdown.
Note3:’Cap’meansthepinhasacapacitorofappropriatevaluebetweenitandground.Note4:Positivelogicisused.
Note5:Formeaningsofthevariables,refertotheblockdiagrams.Note6:Ablankvaluemeans’don’tcare’.
Output
ch2on
fault000
1
00
Σ=11
1
capcapcap
ssto1
ssto2
uv_delay
latchoff
111110
ovp2uvp1uvp2uvplr
newvid00
ch1on
Σ=1Σ=11
TABLE2.PowerGoodTruthTable
Input
ovp11
1
1
1
1
1
π=0
1
1
Allothercombinations
Note7:″π=0″meansatleastonevariableislow.Note8:Positivelogicisused.
Note9:Ablankvaluemeans’don’tcare’.
Note10:Formeaningsofthevariables,refertotheblockdiagrams.
Output
ch1on
ch2on
fault
latchoff
PGOOD
0000000001
ovp2uvpg1uvpg2uvpglr
newvid
TABLE3.VIDCodeandDACOutput
VID411111111111111
VID311111111000000
VID211110000111100
VID111001100110011
VID010101010101010
DACVoltage(V)
NoCPU*
0.9250.9500.9751.0001.0251.0501.075
1.1001.1251.1501.1751.2001.225
www.national.com6
LM2633TABLE3.VIDCodeandDACOutput(Continued)
VID4110000000000000000
VID3001111111100000000
VID2001111000011110000
VID1001100110011001100
VID0101010101010101010
DACVoltage(V)
1.2501.275NoCPU
1.301.351.401.45
1.501.551.601.651.701.751.801.851.901.95
2.00*Thiscodeissetto0.900Vforconvenience.
7www.national.com
LM2633AbsoluteMaximumRatings
(Note11)ESDRating(Note14)AmbientStorageTemperatureRange
2kV
−65˚Cto+150˚C
IfMilitary/Aerospacespecifieddevicesarerequired,pleasecontacttheNationalSemiconductorSalesOffice/Distributorsforavailabilityandspecifications.VoltagesfromtheindicatedpinstoGND/PGND:VIN,KS1,KS2,SW1,SW2ILIM1,ILIM2VID0-VID4
VLIN,VDD1,VDD2,PGOODFB1,FB2,SENSE2,G3,FB3,OUT3CBOOT1CBOOT2ON/SS1,ON/SS2FPWM
PowerDissipation(TA=25˚C),(Note12)
JunctionTemperature
−0.3Vto31V−0.3Vto31V−0.3Vto5V−0.3Vto6V−0.3Vto6V
−0.3VtoSW1+7V−0.3VtoSW2+7V
−0.3Vto5V−0.3Vto7V
1.56W+150˚C
SolderingDwellTime,Temperature(Note13)Wave4sec,260˚CInfrared10sec,240˚CVaporPhase75sec,219˚C
OperatingRatings(Note11)
VIN(VINandVLIN5tiedtogether)
VIN(VINandVLIN5separate)JunctionTemperature1JunctionTemperature2VDD1,VDD2
4.5Vto5.5V5.0Vto30V0˚Cto+125˚C−40˚Cto+125˚C
4.5Vto5.5V
ElectricalCharacteristics
VCC=+15VunlessotherwiseindicatedundertheConditionscolumn.TypicalsandlimitsappearinginplaintypeapplyforTA=TJ=+25˚C.Limitsappearinginboldfacetypeapplyover0˚Cto+125˚C.SymbolSYSTEM∆Vout1_load∆Vout2_load∆VfbIvinChannel1Load
Regulation(Note17)Channel2Load
Regulation(Note17)LineRegulation(forthetwoswitchingregulators)InputSupplyCurrentwiththeSwitchingChannelsON
InputSupplyCurrentwiththeICShutDownVLIN5OutputVoltageILIM1andILIM2PinsSinkCurrent
NegativeCurrentLimit(SWxvsPGNDxvoltage)
SoftStartChargeCurrent
SoftStartSinkCurrentSoftStartONThresholdSoftStartTimeoutThreshold
UV_DELAYThresholdUV_DELAYSourceCurrent
VID4:0InternalPullUpCurrent
(Note20)
VLIN5=5V(Note21)
1.0
InUVLOorthermalshutdown
0.5
VCOMP1movesfrom0.5Vto1.5V,VID4:0=01101
VCOMP2movesfrom0.5Vto1.5V5.0V≤VIN≤30V,VID4:0=01101VFB=0.9V,noVLIN5DCCurrent(Note18)
VON/SS1=VON/SS2=0V(Note19)
IVLIN5=0to25mA,5.5V 01.52 mVmVmV Parameter Conditions Min Typ Max Units 1.52.4mA Ivin_sdVvlin5Iilim_posVilim_neg105.010 185.312 µAVµA 45mV Iss_scIss_skVss_onVsstoVuvdIdelayIvid2.2521.23.52.156 5µAµAVVV 9.013 µAµA www.national.com8 LM2633ElectricalCharacteristics SymbolSYSTEMVuvlo_thrVINUnder-voltageLockout(UVLO)Threshold VINUVLOHysteresisChannel1VOUTUnder-voltageShutdownLatchThreshold (MeasuredattheFB1)Channels2and3VOUTUndervoltageShutdownLatchThreshold (MeasuredattheFB2andFB3) VOUTOvervoltageShutdownLatch ThresholdforChannel1(MeasuredattheFB1)VOUTOvervoltageShutdownLatch ThresholdforChannel2(MeasuredattheFB2)VOUTLowRegulationComparatorEnableThresholdforChannels1and2 HysteresisofLow RegulationComparatorRegulatorWindowDetectorThresholds(PGOODfromHightoLow) RegulatorWindowDetectorThresholds(PGOODfromLowtoHigh) CBOOTLeakageCurrent HDRV1SourceCurrentHDRV1SinkCurrentLDRV1SourceCurrentLDRV1SinkCurrentHDRV1High-SideFETOn-ResistanceLDRV1High-SideFETOn-ResistanceLDRV1Low-SideFETOn-Resistance Parameter (Continued) VCC=+15VunlessotherwiseindicatedundertheConditionscolumn.TypicalsandlimitsappearinginplaintypeapplyforTA=TJ=+25˚C.Limitsappearinginboldfacetypeapplyover0˚Cto+125˚C. Conditions RisingEdge 4.2300 VID4:0=01100 73 80 83 %VOUT4.5 VmV Min Typ Max Units Vuvlo_hysVuvp1Vuvp2,3VID4:0=01100 76 80 86 %VOUTVovp1110114119 %VOUTVovp2109112115 %VOUTVlreg_thr91.5 %VOUTVlreg_hysVpwrbad7 85 (Note22) 110 88 %VOUT%VOUT112 119 Vpwrgd909397 %VOUTGateDrive(ForChannel1SwitchingRegulatorController)Iboot1VCBOOT1=7V VHDRV1=VSW1=0V,VCBOOT1=5VVHDRV1=5VVLDRV1=0VVLDRV1=5V 1001.21.01.22.01.84tbd0.5 nAAAAAΩΩΩ 9www.national.com LM2633ElectricalCharacteristics SymbolIboot2Parameter CBOOTLeakageCurrent HDRV2SourceCurrentHDRV2SinkCurrentLDRV2SourceCurrentLDRV2SinkCurrentHDRV2FETOn-ResistanceLDRV2FETOn-Resistance OscillatorFoscToff_minTon_minIfb1Ifb2Ifb3Icomp1,Icomp2Vcomp_maxGm∆VdacOscillatorFrequencyMinimumOff-TimeMinimumOn-TimeFeedbackInputBiasCurrent,Channel1FeedbackInputBiasCurrent,Channel2FeedbackInputBiasCurrent,Channel3COMPOutputSinkCurrent COMPPinMaximumVoltage TransconductanceChannel1DACOutputVoltageAccuracy (Continued) VCC=+15VunlessotherwiseindicatedundertheConditionscolumn.TypicalsandlimitsappearinginplaintypeapplyforTA=TJ=+25˚C.Limitsappearinginboldfacetypeapplyover0˚Cto+125˚C. Conditions VCBOOT2=7V VHDRV2=VSW2=0V,VCBOOT2=5VVHDRV2=5VVLDRV2=0VVLDRV2=5V Min Typ Max Units GateDrive(ForChannel2SwitchingRegulatorController) 100tbdtbdtbdtbdtbdtbd nAAAAAΩΩ 225250400220 275kHznsns ErrorAmplifier VFB1=2.4VVFB2=1.36VVFB3=1.36V VFB1=150%ofmeasured1.4VDAC,VFB2=150%ofmeasuredbandgap,VCOMP1=VCOMP2=1V tbd 551870 µAnAnA 60µA 1.96576 Vµmho DACOutputandVFB2VCOMP1=1V,DACcodesfrom1.3Vto1.6V VCOMP1=1V,DACcodesfrom0.925Vto1.25Vandfrom1.65Vto2.00V Vfb2Channel2DCOutputVoltageAccuracyChannel3DCOutputVoltageAccuracyG3SinkCurrentG3MinimumSourceCurrent G3MaximumVoltage COMP2pinfrom0.5Vto1.8V −1.5 1.5 % −1.7 1.7 1.2171.2381.259V LinearRegulatorControllerVfb3Vg3_skIg3_scVg3_max1.215 1.2420203.6 1.265 VµAmAV www.national.com10 LM2633ElectricalCharacteristics SymbolVihParameter MinimumHighLevelInputVoltage(FPWM,VID0-VID4) MaximumLowLevelInputVoltage(FPWM,ON/SS1,ON/SS2,VID0-VID4) PGOODOutputHighCurrent PGOODOutputLowVoltage (Continued) VCC=+15VunlessotherwiseindicatedundertheConditionscolumn.TypicalsandlimitsappearinginplaintypeapplyforTA=TJ=+25˚C.Limitsappearinginboldfacetypeapplyover0˚Cto+125˚C. Conditions Min Typ Max Units LogicInputsandOutputs 2.0 V Vil0.8V Ioh_pgVol_pgPGOOD=5.7V(Note23)PGOODSinking20µA 50.3 µAV 11www.national.com LM2633ElectricalCharacteristics VCC=+15VunlessotherwiseindicatedundertheConditionscolumn.TypicalsandlimitsappearinginplaintypeapplyforTA=TJ=+25˚C.Limitsappearinginboldfacetypeapplyover−40˚Cto+125˚C.SymbolSYSTEM∆Vout1_load∆Vout2_load∆VfbIvinChannel1Load Regulation(Note17)Channel2Load Regulation(Note17)LineRegulation(forthetwoswitchingregulators)InputSupplyCurrentwiththeSwitchingChannelsON InputSupplyCurrentwiththeICShutDownVLIN5OutputVoltageILIM1andILIM2PinsSinkCurrent NegativeCurrentLimit(SWxvsPGNDxvoltage) SoftStartChargeCurrent SoftStartSinkCurrentSoftStartONThresholdSoftStartTimeoutThreshold UV_DELAYThresholdUV_DELAYSourceCurrent VID4:0InternalPullUpCurrent VINUnder-voltageLockout(UVLO)Threshold VINUVLOHysteresisChannel1VOUTUnder-voltageShutdownLatchThreshold (MeasuredattheFB1)Channels2and3VOUTUndervoltageShutdownLatchThreshold (MeasuredattheFB2andFB3) VOUTOvervoltageShutdownLatch ThresholdforChannel1(MeasuredattheFB1) VID4:0=01100 72 80 84 %VOUTRisingEdge 4.2300 4.6 VmV (Note20) VLIN5=5V(Note21) 1.0 InUVLOorthermalshutdown 0.5 VCOMP1movesfrom0.5Vto1.5V,VID4:0=01101 VCOMP2movesfrom0.5Vto1.5V5.0V≤VIN≤30V,VID4:0=01101VFB=0.9V,noVLIN5DCCurrent(Note18) VON/SS1=VON/SS2=0V(Note19) IVLIN5=0to25mA,5.5V 01.52 mVmVmV Parameter Conditions Min Typ Max Units 1.52.5mA Ivin_sdVvlin5Iilim_posVilim_neg105.010 185.313 µAVµA 45mV Iss_scIss_skVss_onVsstoVuvdIdelayIvidVuvlo_thr2.2521.23.52.156 5µAµAVVV 9.013 µAµA Vuvlo_hysVuvp1Vuvp2,3VID4:0=01100 75 80 87 %VOUTVovp1109114120 %VOUTwww.national.com12 LM2633ElectricalCharacteristics SymbolSYSTEMVovp2VOUTOvervoltageShutdownLatch ThresholdforChannel2(MeasuredattheFB2)VOUTLowRegulationComparatorEnableThresholdforChannels1and2 HysteresisofLow RegulationComparatorRegulatorWindowDetectorThresholds(PGOODfromHightoLow) RegulatorWindowDetectorThresholds(PGOODfromLowtoHigh) CBOOTLeakageCurrent HDRV1SourceCurrentHDRV1SinkCurrentLDRV1SourceCurrentLDRV1SinkCurrentHDRV1High-SideFETOn-ResistanceLDRV1High-SideFETOn-ResistanceLDRV1Low-SideFETOn-Resistance Parameter (Continued) VCC=+15VunlessotherwiseindicatedundertheConditionscolumn.TypicalsandlimitsappearinginplaintypeapplyforTA=TJ=+25˚C.Limitsappearinginboldfacetypeapplyover−40˚Cto+125˚C. Conditions Min Typ Max Units 108112116 %VOUTVlreg_thr91.5 %VOUTVlreg_hysVpwrbad7 84 (Note22) 109 88 %VOUT%VOUT112 120 Vpwrgd899398 %VOUTGateDrive(ForChannel1SwitchingRegulatorController)Iboot1VCBOOT1=7V VHDRV1=VSW1=0V,VCBOOT1=5VVHDRV1=5VVLDRV1=0VVLDRV1=5V 1001.21.01.22.01.84tbd0.5 nAAAAAΩΩΩ GateDrive(ForChannel2SwitchingRegulatorController)Iboot2CBOOTLeakageCurrent HDRV2SourceCurrentHDRV2SinkCurrentLDRV2SourceCurrentLDRV2SinkCurrentHDRV2FETOn-ResistanceLDRV2FETOn-Resistance OscillatorFoscToff_minTon_minIfb1OscillatorFrequencyMinimumOff-TimeMinimumOn-TimeFeedbackInputBiasCurrent,Channel1 VFB1=2.4V 225 250400220 275 kHznsns VCBOOT2=7V VHDRV2=VSW2=0V,VCBOOT2=5VVHDRV2=5VVLDRV2=0VVLDRV2=5V 100tbdtbdtbdtbdtbdtbd nAAAAAΩΩ ErrorAmplifier 55 µA 13www.national.com LM2633ElectricalCharacteristics SymbolErrorAmplifierIfb2Ifb3Icomp1,Icomp2Vcomp_maxGm∆VdacFeedbackInputBiasCurrent,Channel2FeedbackInputBiasCurrent,Channel3COMPOutputSinkCurrent COMPPinMaximumVoltage TransconductanceChannel1DACOutputVoltageAccuracy Parameter (Continued) VCC=+15VunlessotherwiseindicatedundertheConditionscolumn.TypicalsandlimitsappearinginplaintypeapplyforTA=TJ=+25˚C.Limitsappearinginboldfacetypeapplyover−40˚Cto+125˚C. Conditions VFB2=1.36VVFB3=1.36V VFB1=150%ofmeasured1.4VDAC,VFB2=150%ofmeasuredbandgap,VCOMP1=VCOMP2=1V tbdMin Typ Max Units 1870 nAnA 91µA 1.96576 Vµmho DACOutputandVFB2VCOMP1=1V,DACcodesfrom1.3Vto1.6V VCOMP1=1V,DACcodesfrom0.925Vto1.25Vandfrom1.65Vto2.00V Vfb2Channel2DCOutputVoltageAccuracyChannel3DCOutputVoltageAccuracyG3SinkCurrentG3MinimumSourceCurrent G3MaximumVoltageMinimumHighLevelInputVoltage(FPWM,VID0-VID4) MaximumLowLevelInputVoltage(FPWM,ON/SS1,ON/SS2,VID0-VID4) PGOODOutputHighCurrent PGOODOutputLowVoltage PGOOD=5.7V(Note23)PGOODSinking20µA 50.3 COMP2pinfrom0.5Vto1.8V −2.0 2.0 % −2.2 2.2 1.2121.2381.264V LinearRegulatorControllerVfb3Vg3_skIg3_scVg3_maxVih1.209 1.2420203.6 1.271 VµAmAV LogicInputsandOutputs 2.2 V Vil0.7V Ioh_pgVol_pgµAV Note11:Absolutemaximumratingsindicatelimitsbeyondwhichdamagetothedevicemayoccur.OperatingRatingsareconditionsunderwhichoperationofthedeviceisguaranteed.Forguaranteedperformancelimitsandassociatedtestconditions,seetheElectricalCharacteristicstable. Note12:MaximumallowablepowerdissipationiscalculatedbyusingPDMAX=(TJMAX-TA)/θJA,whereTJMAXisthemaximumjunctiontemperature,TAistheambienttemperatureandθJAisthejunction-to-ambientthermalresistanceofthespecifiedpackage.The1.56Wratingresultsfromusing150˚C,25˚C,and80˚C/WforTJMAX,TA,andθJArespectively.AθJAof90˚C/Wrepresentstheworst-caseconditionofnoheatsinkingofthe48-pinTSSOP.Heatsinkingallowsthesafedissipationofmorepower.TheAbsoluteMaximumpowerdissipationshouldbederatedby12.5mWper˚Cabove25˚Cambient.TheLM2633activelylimitsitsjunctiontemperaturetoabout150˚C. Note13:Fordetailedinformationonsolderingplasticsmall-outlinepackages,refertothePackagingDatabookavailablefromNationalSemiconductorCorporation.Note14:ExceptforILIM1andILIM2pins,whichare1.5kV.Fortestingpurposes,ESDwasappliedusingthehuman-bodymodel,a100pFcapacitordischargedthrougha1.5kΩresistor. Note15:AtypicalisthecenterofcharacterizationdatatakenwithTA=TJ=25˚C.Typicaldataarenotguaranteed. Note16:Alllimitsareguaranteed.Allelectricalcharacteristicshavingroom-temperaturelimitsaretestedduringproductionwithTA=TJ=25˚C.Allhotandcoldlimitsareguaranteedbycorrelatingtheelectricalcharacteristicstoprocessandtemperaturevariationsandapplyingstatisticalprocesscontrol.Note17:ThistestsimulatesheavyloadconditionbychangingCOMPpinvoltage. Note18:ThisparameterindicateshowmuchcurrenttheLM2633isdrawingfromtheinputsupplywhenitisfunctioningbutnotdrivingexternalMOSFETsorabipoloartransistor. www.national.com14 LM2633ElectricalCharacteristics (Continued) Note19:ThisparameterindicateshowmuchcurrenttheLM2633isdrawingfromtheinputsupplywhenitiscompletelyshutoff.Note20:WhenON/SS1,2pinsarechargedabovethisvoltage,theundervoltageprotectionfeatureisenabled.Note21:Abovethisvoltage,theunder-voltageprotectionisenabled.Note22:Thisisthesameasover-voltageprotectionthreshold. Note23:ThisistheamountofcurrentPGOODsinkswhenPGOODishighandisforcedtothevoltageindicated 15www.national.com LM2633www.national.com 20000804TypicalApplication16 LM2633TypicalApplication IDC1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19D1D2D3D4L1L2Q1Q2Q3Q4Q5R1R2R3R4R5R6R7R8R9R10R11R12R13R14U1 CEPH149-1R6MCCDRH127-100MCIRF7805IRF7805IRF7807IRF7807MMBT2222ALT1CRCW0805100JCRCW0805104JCRCW08051002FCRCW08054752FCRCW08052612FCRCW08052872FCRCW0805243JCRCW0805512JCRCW0805683JCRCW0805562JCRCW08051002FCRCW08051002FCRCW0805100JCRCW0805104JLM2633M Number25SP56M T510E108M004AST510E108M004ASVJ1206S105MXJACVJ1206S105MXJACVJ0805Y104MXAABVJ0805Y153MXJABVJ0805Y103MXAABVJ0805Y103MXAABVJ0805Y222MXJABVJ0805Y681MXJABVJ0805Y472MXJABVJ0805Y472MXJABVJ0805Y821MXJABVJ0805A221MXAABVJ0805Y474MXJABVJ1206S105MXJACVJ0805Y104MXJACVJ0805Y104MXJACBAT54BAT54 (Continued) TABLE4.BillofMaterialsforTypicalApplicationCircuit Type Capacitor,OSCONCapacitor,TantalumCapacitor,TantalumCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicCapacitor,CeramicDiode,SchottkyDiode,SchottkyDiode,SchottkyDiode,SchottkyInductor,PowerInductor,PowerMOSFET,N-CHANMOSFET,N-CHANMOSFET,N-CHANMOSFET,N-CHANBJT,NPNResistorResistorResistorResistorResistorResistorResistorResistorResistorResistorResistorResistorResistorResistorIC 14.6x14.6mm212x12mmSO-8SO-8SO-8SO-8SOT-2308050805080508050805080508050805080508050805080508050805TSSOP-48 2Size Radial,ΦxL=10.5x10.5mm27.3x6.0x3.6mm37.3x6.0x3.6mm31206120608050805080508050805080508050805080508050805120608050805SOT-23SOT-23 Parameters25V,56µF,25mΩ,3.2A 4V,1mF,18mΩ4V,1mF,18mΩ16V,1µF,X7S16V,1µF,X7S50V,0.1µF,X7R16V,0.015µF,X7R50V,0.01µF,X7R50V,0.01µF,X7R16V,2200pF,X7R16V,680pF,X7R16V,4700pF,X7R16V,4700pF,X7R16V,820pF,X7R50V,220pF,X7R16V,0.47µF,X7R16V,1µF,X7S16V,0.1µF,X7R16V,0.1µF,X7R30V,200mA30V,200mA Qt.33111111111111111111111 VendorSanyoKemetKemetVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishay(optional)(optional)SumidaSumidaIRIRIRIRMotorolaVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayVishayNational 1.6µH,15.5A,1.5mΩ10µH,5.4A,21.6mΩ30V,10mΩ@4.5V30V,10mΩ@4.5V30V,25mΩ@4.5V30V,25mΩ@4.5V40V,600mA10Ω,5%100kΩ,5%10.0kΩ,1%47.5kΩ,1%26.1kΩ,1%28.7Ω,1%24kΩ,5%5.1kΩ,5%68kΩ,5%5.6kΩ,5%10.0kΩ,1%10.0kΩ,1%10Ω,5%100kΩ,5%3-in-1control 1112111111111111111111 (Forperformance,seeTypicalPerformanceCurves) 17www.national.com LM2633TypicalPerformanceCharacteristics EfficiencyvsLoadCurrent(Ch1,TypicalApplication) EfficiencyvsLoadCurrent (Ch2,TypicalApplication,FPWM=0) 200008A120000898 EfficiencyvsLoadCurrent (Ch2,TypicalApplication,FPWM=1) SwitchingFrequencyvsLoadCurrent 2000089920000890 PWMFrequencyvsTemperatureErrorAmplifierTransconductancevsTemperature 200008A3200008A4 www.national.com18 LM2633TypicalPerformanceCharacteristics VLIN5VoltagevsTemperature (Continued) Ch2ReferenceVoltagevsTemperature 20000894 200008B5 CurrentSourcingCapabilityof PinG3vsItsVoltage DACVoltagevsTemperature(Ch1) 200008A6 20000897 BiasCurrentofPinILMxvsTemperature Force-PWMOperation (TypicalApplication,Ch1Load=120mA) 200008A2 200008A5 19www.national.com LM2633TypicalPerformanceCharacteristics Skip-ModeOperation (TypicalApplication,Ch1Load=120mA) (Continued) SoftStartwithConstantLoadCurrent 200008B3 20000892 SoftStartUnderNoLoad(Ch1,TypicalApplication)LoadTransientResponse (Ch1,TypicalApplication,VOUT1=1.6V) 200008B4200008A9 CurrentLimitandUVP Control-OutputBodePlot (Ch1,TypicalApplication,VIN=8V,NoLoad) 20000891 20000893 www.national.com20 LM2633TypicalPerformanceCharacteristics LoopBodePlot(Ch1,TypicalApplication,VIN=8V, VOUT1=1.6V,NoLoad, Compensation:C14=390pF,R9=100k,C15=150pF, R10=8.2k) (Continued) Control-OutputBodePlot (Ch2,TypicalApplication,VIN=8V,NoLoad) 200008B120000896 LoopBodePlot(Ch2,TypicalApplication,VIN=8V,No Load, Compensation:C10=5.6nF,R7=30k,C11=560pF, R8=5.1k) 200008B2 21www.national.com LM2633OperationDescriptions General TheLM2633isacombinationofthreevoltageregulatorcontrollers.Amongthem,twoareswitchingregulatorcontrol-lersandoneisalinearregulatorcontroller.Thetwoswitch-ingcontrollers,Channel1andChannel2,operate180˚outofphase.Theycanbeindependentlyenabledanddisabled.Thelinearcontroller,orChannel3,isdisabledonlywhenbothswitchingchannelsaredisabled.Channel1outputvoltageissetbyaninternalDAC,whichacceptsa5-bitVIDcodefrompins6through10.Channels2and3outputvoltagesareadjustedwithavoltagedivider.Bothswitchingchannelsaresynchronousandemploypeakcurrentmodecontrolscheme.Protectionfeaturesincludeover-voltageprotection(Ch1and2),under-voltageprotection(allchan-nels),andpositiveandnegativepeakcurrentlimit(Ch1and2).UVPfunctioncanbedelayedbyanarbitraryamountoftime.Inputvoltagetotheswitchingregulatorscanrangefrom4.5Vto30V.Thelinearcontrollercangenerateamaxi-mum3.8Vgate/basedrivevoltage.WithanexternalNPNtransistor,outputvoltagecangoupto3.0V.Thepowergoodfunctionalwaysmonitorsallthreeoutputvoltages. SoftStart IftheON/SSxpinisconnectedtogroundinsteadoftoacapacitor,thecorrespondingchannelisturnedoffandwillnotstartup. AssumetheON/SSxpinisconnectedtoacapacitorandtherestofthecircuitissetupcorrectly.Whentheinputvoltagerisesabovethe4.2Vthreshold,theinternalcircuitryispow-eredon,theON/SSxpinshouldbealreadyheldat1.1V,anda2µAcurrentstartstochargethecapacitorconnectedbe-tweentheON/SSxpinandground.WhentheON/SSxpinvoltageexceeds1.2V,thecorrespondingchannelisturnedon.AMIN_ON_TIMEcomparatorgeneratesthesoftstartPWMpulses.AstheON/SSxpinvoltagerampsup,thedutycyclegrows,causingtheoutputvoltagetorampup.Duringthistime,theerroramplifieroutputvoltageisclampedat0.8V,andthedutycyclegeneratedbythePWMcomparatorisignored.Whenthecorrespondingoutputvoltageexceeds99%ofthesettargetvoltage,themodeofthechanneltransitionsfromsoftstarttooperating.Asaresult,thehighclampattheoutputoftheerroramplifierisswitchedto2V.Beyondthispoint,oncethePWMpulsesgeneratedbythePWMcomparatorarewiderthanthatgeneratedbytheMI-N_ON_TIMEcomparator,thePWMcomparatortakesoverandstartstoregulatetheoutputvoltage.Thatis,peakcurrentmodecontrolnowtakesplace. Thespeedatwhichthedutycyclegrowsdependsonthecapacitanceofthesoftstartcapacitor.Thehighertheca-pacitance,theslowerthespeed.However,thatspeedisindependentofhowfasttheinputvoltagerises.Thatisbecausetherampsignalusedtogeneratethesoftstartdutycyclehasaslopeproportionaltoinputvoltage,makingtheproductofdutycycleandinputvoltageavaluethatisinde-pendentofinputvoltage.ThisfeaturemakesthesoftstartprocessmorepredictableandreliablebecausewhethertheinputpowersupplygoesthroughasoftstartprocessorisappliedabruptlydoesnotaffecttheLM2633softstart. Duringsoftstart,under-voltageprotectionisdisabled.Butover-voltageprotectionandcurrentlimitareinplace. WhentheON/SSxpinvoltageexceeds3.5V,asoftstarttimeoutsignal(sstox)willbeissued.Thissignalenablestheunder-voltageprotection.SeetheUnder-VoltageProtectionsection. ShutdownMode IfbothON/SSxpinsarepulledlow,theICwillbeinshutdownmode.Bothtopgate-drivesofthetwoswitchingchan-nelsareturnedoffwhilebothbottomgate-drivesremainon.Thelinearchannelisalsodisabled. ThesamethinghappenstothegatedriveswhentheinputvoltageisbroughtbelowtheUVLOthreshold. TurningOffaSwitchingChannel AswitchingchannelcanbeturnedoffbypullingitsON/SSxpinbelowabout1.1V.UpondetectingalowlevelonON/SSxpin,thecorrespondingtopgate-drivewillbeturnedoffandthebottomgate-drivewillbeturnedon. Inahighcurrentapplication,itmaybenecessarytotakespecialmeasurestomakesurethattheoutputvoltagedoesnotgotoonegativeduringshutdown.Oneofthosemea-suresistoaddaSchottkydiodeinparallelwithoutputcapacitors.Anothermeasureistofinetunethepowerstageparameterssuchasinductanceandcapacitancevalues.FaultState Whenevertheinputvoltagebecomestoolow(lessthanabout3.9V),ortheICistoohotandentersthermalshutdownmode,a’fault’signalwillbegeneratedinternally.ThissignalwilldischargethecapacitorconnectedbetweentheON/SSxpinandgroundwith3µAofcurrentuntilthepinreaches1.1V.Theswitchingchannelswillbeturnedoffuponseeingthissignal. Inthefaultstate,OVPandUVParedisabledandshutdownlatchisreleased. Force-PWMMode Thismodeappliestobothswitchingchannelssi-multaneously.Theforce-PWMmodeisactivatedbypullingtheFPWMpintologiclow.Inthismode,thetopFETandthebottomFETgatesignalsarealwayscomplementarytoeachother.The0-CROSSING/NEGATIVECURRENTLIMITcomparatorwillbesettodetectthenegativecurrentlimit.Inforce-PWMmode,theregulatoralwaysoperatesinContinu-ousConductionMode(CCM)anditssteady-statedutycycle(approximatelyVOUT/VIN)isalmostindependentofload.Theforce-PWMmodeisgoodforapplicationswherefixedswitchingfrequencyisrequired.Italsooffersthefastestloadtransientresponse. Inforce-PWMmode,thetopFEThastobeturnedonforaminimumof220nseachcycle.However,whentherequireddutycycleislessthantheminimumvalue,theskipcompara-torwillbeactivatedandpulseswillbeskippedtomaintainregulation. SkipComparator WhenevertheCOMPxpinvoltagegoesbelowthe0.5Vthreshold,thePWMcycleswillbe’skipped’untilthatvoltageagainexceedsthethreshold. Pulse-SkipMode ThismodeisactivatedbypullingtheFPWMpintoaTTL-compatiblelogichighandappliestobothswitchingchannelssimultaneously.Inthismode,the0-CROSSING/NEGATIVECURRENTLIMITcomparatordetectsthebottom 22 www.national.com LM2633OperationDescriptions (Continued) FETcurrent.OncethebottomFETcurrentflowsfromdraintosource,thebottomFETwillbeturnedoff.Thispreventsnegativeinductorcurrent.Inforce-PWMoperation,thein-ductorcurrentisallowedtogonegative,sotheregulatorisalwaysinContinuousConductionMode(CCM),nomatterwhattheloadis.InCCM,thesteady-statedutycycleisalmostindependentoftheload,andisroughlyVOUTdividedbyVIN.Inpulse-skipmode,theregulatorentersDiscontinu-ousConductionMode(DCM)underlightload.OncetheregulatorentersDCM,itssteady-statedutycycledroopsastheloadcurrentdecreases.TheregulatoroperatesinDCMPWMmodeuntilitsdutycyclefallsbelow85%oftheCCMdutycycle,whentheMIN_ON_TIMEcomparatortakesover.Itforces85%CCMdutycyclewhichcausestheoutputvoltagetocontinuouslyriseandCOMPxpinvoltage(erroramplifieroutputvoltage)tocontinuouslydroop.WhentheCOMPxpinvoltagedipsbelow0.5V,theCYCLE_SKIPcom-paratortoggles,causingthepresentswitchingcycletobe’skipped’,i.e.,bothFETsremainoffduringthewholecycle.AslongastheCOMPxpinvoltageisbelow0.5V,noswitch-ingoftheFETswillhappen.Asaresult,theoutputvoltagewilldroop,andtheCOMPxpinvoltagewillrise.WhentheCOMPxpingoesabove0.5V,theCYCLE_SKIPcomparatorflipsandallowsa85%CCMdutycyclepulsetohappen.IftheloadcurrentissosmallthatthissinglepulseisenoughtobringoutputvoltageuptosuchalevelthattheCOMPxpindropsbelow0.5Vagain,thepulseskippingwillhappenagain.OtherwiseitmaytakeanumberofconsecutivepulsestobringtheCOMPxpinvoltagedownto0.5Vagain.Astheloadcurrentincreases,ittakesmoreandmoreconsecutivepulsestodischargetheCOMPxvoltageto0.5V.Whentheloadcurrentissohighthatthedutycycleexceedsthe85%CCMdutycycle,thenpulse-skippingdisappears.Inpulse-skipmode,thefrequencyoftheswitchingpulsesde-creasesastheloadcurrentdecreases. TheLM2633needstosensetheoutputvoltagesdirectlyinthepulse-skipmodeoperation.ForChannel1thisisrealizedthroughtheFB1pin.ForChannel2,itisrealizedbycon-nectingSENSE2pintotheoutput. TheLM2633pulse-skipmodehelpsthelightloadefficiencyfortworeasons.First,itdoesnotturnonthebottomFET,thiseliminatescirculatingenergyandreducesgatedrivepowerloss.Second,thetopFETisonlyturnedonwhennecessary,ratherthaneverycycle,whichalsoreducesgatedrivepowerloss. CurrentSensingandCurrentLimiting Sensingoftheinductorcurrentforfeedbackcontrolisac-complishedthroughsensingthedrain-sourcevoltageofthetopFETwhenitisturnedon.ThereisaleadingedgeblankingcircuitrythatforcesthetopFETtobeonforatleast160ns.Beyondthisminimumontime,theoutputofthePWMcomparatorisusedtoturnoffthetopFET.TheblankingcircuitryisbeingusedtoblankoutthenoiseassociatedwiththeturningonofthetopFET. CurrentlimitisimplementedusingthesameVdsinformation.SeeFigure1. 20000805 FIGURE1.CurrentLimitMethod Thereisa10µAcurrentsinkontheILIMxpin.WhenanexternalresistorisconnectedbetweenILIMxpinandtopFETdrain,aDCvoltageisestablishedbetweenthetwonodes.WhenthetopFETisturnedon,thevoltageacrosstheFETisproportionaltotheinductorcurrent.Iftheinductorcurrentistoohigh,SWxpinvoltagewillbelowerthantheILIMxvoltage,causingthecomparatortotoggleandthusthetopFETwillbeturnedoffimmediately.ThecomparatorisdisabledwhenthetopFETisturnedoffandduringtheleadingedgeblankingtime. NegativeCurrentLimit ThenegativecurrentlimitisputinplacetoensurethattheinductorwillnotsaturateduringanegativecurrentflowandcauseexcessivecurrenttoflowthroughthebottomFET.ThenegativecurrentlimitisrealizedthroughsensingthebottomFETVds.AninternalreferencevoltageisusedtocomparewiththebottomFETVdswhenitison.UponseeingtoohighaVds,thebottomFETwillbeturnedoff.ThenegativecurrentlimitisactivatedinforcePWMmode,orinthecaseofChannel1,alsowheneverthereisadynamicVIDchange.ActiveFrequencyControl Astheinput/outputvoltagedifferentialincreases,theontimeofthetopFETasregulatedbythefeed-backcontrolcircuitrymayapproachtheminimumvalue,i.e.theblankingtime.Thatwillcauseunstableoperationssuchaspulseskippingandunevendutycycles.Toavoidsuchanissue,theLM2633isdesignedinsuchawaythatwheninputvoltagerisesaboveabout17V,thePWMfrequencystartstodroop.Thefrequencydroopsfairlylinearlywiththeinputvoltage.Seetypicalcurves.ThetheoreticalequationforPWMfre-quencyisƒ=min(1,17V/VIN)x250kHz. ThemainimpactofthisshiftinPWMfrequencyistheinductorripplecurrentandoutputripplevoltage.Regulatordesignshouldtakethisintoaccount. ShutdownLatchState Thisstateistypicallycausedbyanoutputundervoltageorovervoltageevent.Inthisstate,bothswitchingchannelshavetheirtopFETsturnedoff,andtheirbottomFETsturnedon.Thelinearchannelisnotaffected. Therearetwomethodstoreleasethesystemfromthelatchstate.Oneistocreateafaultstate(seethecorrespondingsection)byeitherbringingdowntheinputvoltagetobelow3.9VUVLOthresholdandthenbringingitbacktoabove4.2V,orsomehowbycausingthesystemtoenterthermalshutdown.AnothermethodistopullbothON/SSxpinsbelow0.8Vandthenreleasethem. Afterthelatchisreleased,thetwoswitchingchannelswillgothroughthenormalsoftstartprocess.Thelinearchannel 23 www.national.com LM2633OperationDescriptions (Continued) PowergoodupperlimitisthesameasthatoftheOVPfunction. Incases2and3above,ifthecorrespondingoutputvolt-age(s)recovers,PGOODwillbeassertedagain.Butthereisabuilt-inhysteresis.SeeVpwrgdintheElectricalCharacter-isticsTable.TheaboveinformationisalsoavailableinPowerGoodTruthTable. WhentheinternalpowergoodMOSFETisturnedon,thePGOODpinwillbepulledtoground.Whenitisturnedoff,thePGOODpinfloats(open-drain).TheonresistanceofthepowergoodMOSFETisabout15kΩ. DynamicVIDChange Duringnormaloperation,ifChannel1seesachangeintheVIDpattern,aNEWVIDsignalwillbeissued.UponseeingtheNEWVIDsignal,powergoodsignalwillbedeasserted,UVPandOVPofChannel1willbedisabledtemporarily,andChannel1goesthroughaspecialsteptoquicklyramptheoutputvoltagetothenewvalue. Ifthenewoutputvoltageishigherthantheoldvoltage,Channel1willrelyonthecontrollooptochangetheoutputvoltage.Ifthenewvalueislowerthantheoldone,thetopFETisgoingtoremainoffwhilethebottomFETisgoingtoremainon.Thiswillcausetheoutputcapacitortodischargethroughtheinductor.The0-CROSSING/NEGATIVECUR-RENTLIMITcomparatorwilldetectfornegativeovercurrent,eveniftheLM2633isinpulse-skipmode.Whenthenegativecurrentlimitisreached,bottomFETwillbeturnedoff,forcingtheinductorcurrenttoflowthroughthebodydiodeofthetopFETtotheinputsupply.Whennextclockcyclecomes,thebottomFETwillbeturnedonagain,anditwillnotbeturnedoffuntilthenegativecurrentlimitisreachedagain.Duringthisprocess,iftheoutputvoltagegoesbelowthenewvolt-age,theNEWVIDsignalwillbedeasserted.Atthistime,powergoodfunctionwillbereleased,OVPandUVPwillbeenabledandthebottomFETwillbeturnedoff.ThenormalcontrollooptakesoveraftertheoutputvoltagedroopsbelowthenewDACvoltage. Internal5VSupply Theinternal5VsupplyisgeneratedfromtheVINvoltagethroughaninternallinearregulator.This5Vsupplyismainlyforinternalcircuitryuse,butcanalsobeusedexternally(throughtheVLIN5pin)forconvenience.Atypicaluseofthis5Vissupplyingthebootstrapcircuitryfortopdriversandsupplyingthevoltageneededbythebottomdrivers(throughtheVDDxpins).Butsincethis5Visgeneratedbyalinearregulator,itmayhurtthelightloadefficiency,especiallywhenVINvoltageishigh.Soifthereisaseparate5Vavailablethatisgeneratedbyaswitchingpowersupply,itmaybeagoodideatousethat5VtopowerthebootstrapcircuitryandtheVDDxpinsforbetterefficiencyandlessthermalstressontheLM2633. Inshutdownmode,theVLIN5pinwillgoto5.5V.SoitisrecommendednottousethisvoltageforpurposesotherthanthebootstrapcircuitryandVDDxpins. Whenthepowerstageinputvoltagecanbeguaranteedtobewithin4.5Vto5.5V,theVLIN5pincanbetiedtotheVINpindirectly.Inthismode,all5VcurrentsaredirectlycomingfrompowerstageinputrailVINandpowerlossduetotheinternallinearregulationisnolongeranissue. outputvoltagewillnotbeaffectedunlesstheUVLOmethodisusedtoreleasethelatch.IfthelinearchannelcausesaUVPevent,thentheICentersShutDownLatchState.Iflaterthefaultatthelinearchannelisremoved,thelinearchannelwillrecover,buttheICwillstillbeinthelatchstate.Over-voltageProtection Thisprotectionfeatureisimplementedinthetwoswitchingchannelsandnotinthelinearchannel.RefertoTable1.Aslongasthereisatleastoneswitchingchannelenabled,andtheLM2633isnotinfaultstate,anovervoltageeventateitherofthetwoswitchingchannels’outputwillcausesys-temtoentertheShutDownLatchState. However,iftheovervoltageeventhappensonlyonChannel1afteradynamicVIDchangesignalisissuedandbeforethechangecompletes,thesystemwillnotentertheShutDownLatchState.SeetheDynamicVIDChangesection.Under-voltageProtection TheUVPfeatureisimplementedinallthreechannels. IftheUV_DELAYpinispulledtoground,thentheunder-voltageprotectionfeatureisdisabled.Otherwise,ifacapaci-torisconnectedbetweentheUV_DELAYpinandground,theUVPisenabled.AssumeUVPisenabledandthesystemisnotinfaultstate.Ifaswitchingchannelisenabled,anditssoftstarttimeoutsignal(sstox,seesoftstartsection)isasserted,thenanundervoltageeventattheoutputofthatchannelwillcausethesystemtoentertheShutDownLatchState. However,iftheundervoltageeventhappensonlyonChan-nel1afteradynamicVIDchangesignalisissuedandbeforethechangecompletes,thesystemwillnotentertheShutDownLatchState.SeetheDynamicVIDChangesection.Forthelinearchannel,ifthereisatleastoneswitchingchannelon,andatleastonesoftstarttimeoutsignalhasbeenissued,andifthesystemisnotinFaultState,thenanundervoltageeventatthelinearregulatoroutputwillcausethesystemtoenterShutDownLatchState. WhentheLM2633reactsonanundervoltageevent,a5µAcurrentwillbechargingthecapacitorconnectedtotheUV_DELAYpinandwhenitsvoltageexceeds2.1V,thesystemimmediatelyentersShutDownLatchState. Fordetails,seetheblockdiagramandShutDownLatchTruthTable. PowerGoodFunction Thepowergoodfunctionisageneralindicationofthehealthoftheregulators.ThereisaninternalMOSFETtiedfromthePGOODpintoground.PowergoodsignalisassertedbyturningoffthatMOSFET. TheinternalpowergoodMOSFETwillnotbeturnedonunlessatleastoneofthefollowingoccurs: 1.Thereisanoutputovervoltageeventinatleastoneof theswitchingchannels. 2.Theoutputvoltageofanyofthethreechannelsisbelow thepowergoodlowerlimit,regardlessofON/SSxpinvoltagelevel. 3.WheneverChannel1isgoingthroughadynamicVID change. 4.Systemisintheshutdownmode.5.Systemisinthefaultstate. 6.Systemisintheshutdownlatchstate. www.national.com 24 DesignProcedures CPUCore/GTLBusPowerSupplyNomenclature LM2633DesignProcedures (Continued) ESR-EquivalentSeriesResistance. Loadingtransient-aloadtransientwhentheloadcurrentgoesfromminimumloadtofullload. Unloadingtransient-aloadtransientwhentheloadcurrentgoesfromfullloadtominimumload.C-regulatoroutputcapacitance.D-dutycycle.f-switchingfrequency. Inlim-negativecurrentlimitlevel.Iilim-ILIMxpincurrent. Iirrm-maximuminputcurrentrippleRMSvalue.Iload-loadcurrent. Irip-outputinductorpeak-to-peakripplecurrent. ThedesignproceduresthatfollowaregenerallyappropriateforboththeCPUcoreandtheGTLbuspowersupplies,althoughemphasisisplacedontheformer.Whenthereisadifferencebetweenthetwo,itwillbepointedout. OutputCapacitorSelection Typeofoutputcapacitors DifferenttypeofcapacitorsoftenhavedifferentcombinationsofcapacitanceandESR.High-capacitancemulti-layerce-ramiccapacitors(MLCs)haveverylowESR,typically12mΩ,butalsorelativelylowcapacitance-upto100µF.TantalumcapacitorscanhavefairlylowESR,suchas18mΩ,andprettyhighcapacitance-upto1mF.AluminumcapacitorscanhaveveryhighcapacitanceandfairlylowESR.OSCONcapacitorscanachieveESRvaluesthatareevenlowerthanthoseofMLCs’whilehavingahighercapacitance.Tutorialonloadtransientresponse Skiptothenextsubsectionwhenaquickdesignisdesired.ThecontrolloopoftheLM2633canbemadefastenoughsothatwhenaworst-caseloadtransienthappens,dutycyclewillsaturate(meaningitjumpstoeither0%orDmax).Ifthecontrolloopisfastenough,theworstsituationforaloadtransientwillbethatthetransienthappenswhenthefollow-ingthreearealsohappening.One,presentPWMpulsehasjustfinished.Two,inputvoltageisthehighest.Three,theloadcurrentgoesfrommaximumdowntominimum(referredtoasanunloadingtransient).Figure2showshowinductorcurrentchangesduringaworst-caseloadtransient.Thereasonsareasfollows.InamobileCPUapplication,theinput/outputvoltagedifferential,whichisappliedacrosstheinductorduringaloadingtransient,ishigherthantheoutputvoltage,whichisappliedacrosstheinductorduringanun-loadingtransient. ±δ%-CPUcorevoltageregulationwindow.±λ%-LM2633initialDACtolerance. ∆Vc_s-maximumallowedCPUcorevoltageexcursiondur-ingaloadtransient,asderivedfromCPUspecifications.∆Ic_s-maximumloadcurrentchangeduringaloadtransient,asspecifiedbytheCPUmanufacturer.L-inductanceoftheoutputinductor. Re-totalcombinedESRofoutputcapacitors. Re_s-maximumallowedtotalcombinedESRoftheoutputcapacitors,asderivedfromCPUloadtransientspecifica-tions. Rilim-currentlimitadjustmentresistance.SeeCurrentSens-ingandCurrentLimiting. tmax-maximumalloweddynamicVIDtransitiontime.tpeak-timefortheCPUcorevoltagetoreachitspeakvalueduringanunloadingtransient. Vin-inputvoltagetotheswitchingregulators. Vn-nominaloutputvoltage. Vold-nominalCPUcorevoltagebeforedynamicVIDchange. Vnew-nominalCPUcorevoltageafterdynamicVIDchange.Vrip-peak-to-peakoutputripplevoltage. General Designingapowersupplyinvolvesmanytradeoffs.Agooddesignisusuallyadesignthatmakesgoodtradeoffs.To-day’ssynchronousbuckregulatorstypicallyrunata200kHzto300kHzswitchingfrequency.Beyondthisrange,switchinglossbecomesexcessive,andbelowthisrange,inductorsizebecomesunnecessarilylarge.TheLM2633hasafixedop-eratingfrequencyof250kHzwhenVINvoltageisbelowabout17V,andhasdecreasedfrequencywhenVINvoltageexceeds17V.SeeActiveFrequencyControlsection. InamobileCPUapplication,boththeCPUcoreandtheGTLbusexhibitlargeandfastloadcurrentswings.Theloadcurrentslewrateduringsuchatransientisusuallywellbeyondtheresponsespeedoftheregulator.Tomeettheregulationspecification,specialconsiderationsshouldbegiventothecomponentselection.Forexample,thetotalcombinedESRoftheoutputcapacitorsmustbelowerthanacertainvalue.Alsobecauseofthetightregulationspecifica-tion,onlyasmallbudgetcanbeassignedtoripplevoltage,typicallylessthan20mV.Itisfoundthatstartingfromagivenoutputvoltageripplewilloftenresultinfewerdesignitera-tions. 20000806 FIGURE2.Worst-caseLoadTransient Thatmeanstheinductorcurrentchangesslowerduringanunloadingtransientthanduringaloadingtransient.Theslowertheinductorcurrentchangesduringaloadtransient,thehigheroutputcapacitanceisneeded.Thatiswhyanunloadingtransientistheworstcase.IftheloadtransienthappenswhenthepresentPWMpulsehasjustfinished,theinductorcurrentwillbethehighest,whichmeanshighestinitialchargingcurrentfortheoutputcapacitors.Finally,thehighertheinputvoltage,thehighertheinductorripplecur-rentandthehighertheinitialchargingcurrentfortheoutputcapacitors. 25www.national.com LM2633OutputCapacitorSelection (Continued) Thetotalchangeinoutputvoltageduringsuchaloadtran-sientis: (3)∆Vc=∆Vr+∆VqFromFigure4itcanbetoldthat∆Vcwillreachitspeakvalue atsomepointintimeandthenitisgoingtodecrease.Thelargertheoutputcapacitanceis,theearlierthepeakwillhappen.Ifthecapacitanceislargeenough,thepeakwilloccuratthebeginningofthetransient,i.e.,∆Vcwilldecreasemonotonicallyafterthetransienthappens.Tofindthepeakposition,letthederivativeof∆Vcgotozero,andtheresultis: 20000807 FIGURE3.LoadTransientSpec.Violation Becausetheresponsespeedoftheregulatorisslowcom-paredtoatypicalCPUloadtransient,theregulatorhastorelyheavilyontheoutputcapacitorstohandletheloadtransient.TheinitialovershootorundershootiscausedbytheESRoftheoutputcapacitors.Howtheoutputvoltagerecoversafterthatinitialexcursiondependsonhowfasttheoutputinductorcurrentrampsandhowlargetheoutputcapacitanceis.SeeFigure3.IfthetotalcombinedESRoftheoutputcapacitorsisnotlowenough,theinitialoutputvoltageexcursionwillviolatethespecification,see∆Vc1.IftheESRislowenough,butthereisnotenoughoutputcapacitance,outputvoltagewillhavetoomuchanextraexcursionandtraveloutsidethespecificationwindow,beforeitreturnstoitsnominalvalue,see∆Vc2. (4) Thetargetistofindthecapacitancevaluethatwillyield,attpeak,a∆Vcthatequals∆Vc_s.Bypluggingtpeakexpressionintothe∆VCexpressionandequatingthelatterto∆Vc_s,thefollowingformulaisobtained: (5) NoticeitisalreadyassumedthetotalESRisnogreaterthanRe_sotherwisethetermunderthesquarerootwillbeanegativevalue. 20000813 FIGURE5.Re=Re_svsRe 20000808 FIGURE4.DeltaOutputVoltageComponentsDuringaloadtransient,thedeltaoutputvoltage∆Vchastwochangingcomponents.OneisthedeltavoltageacrosstheESR(∆Vr),theotheristhedeltavoltagecausedbythegainedcharge(∆Vq).Bothdeltavoltageschangewithtime.For∆Vr,theequationis: (1) andfor∆Vq,theequationis: (6) Example:Vn=1.35V,δ%=7.5%,λ%=1.4%,Vrip=20mV (2) Sincetheripplevoltageisincludedinthecalculationof∆Vc_s,theinductorripplecurrentshouldnotbeincludedintheworst-caseloadcurrentexcursion.Thatis,theworst-caseloadcurrentexcursionshouldbesimply∆Ic_s. www.national.com26 LM2633OutputCapacitorSelection (Continued) MaximumESRcalculation Nomatterhowmuchcapacitancethereis,ifthetotalcom-binedESRisnotlessthanacertainvalue,theloadtransientrequirementwillnotbemet. ThemaximumallowedtotalcombinedESRis: Generallyspeaking,Cmaxdecreaseswithdecreasingtmax,InlimandIload,butwithincreasingvoltagestep.Powerlossinoutputcapacitors Inatypicalbuckregulator,theripplecurrentintheinductor(andthustheoutputcapacitors)issosmallthatitcausesverylittlepowerloss.Theequationforcalculatingthatlossis: (7) Example:∆Vc_s=72mV,∆Ic_s=10A.ThenRe_s=7.2mΩ.MaximumESRcriterioncanbeusedwhenthecapacitanceishighenough,otherwisemorecapacitorsthanthenumberdeterminedbythiscriterionshouldbeused.Minimumcapacitancecalculation InaCPUcoreoraGTLbuspowersupply,theminimumoutputcapacitanceistypicallydictatedbytheloadtransientrequirement.Ifthereisnotenoughcapacitance,theoutputvoltageexcursionwillexceedthemaximumallowedvalueevenifthemaximumESRrequirementismet.Theworst-caseloadtransientisanunloadingtransientthathap-penswhentheinputvoltageisthehighestandwhenthetopFEThasjustbeenturnedoff.Thecorrespondingminimumcapacitanceiscalculatedasfollows: (10) Example:Irip=4.3A,Re=7mΩ. (11) OutputInductorSelection Thesizeoftheoutputinductorcanbedeterminedfromtheassignedoutputripplevoltagebudgetandtheimpedanceoftheoutputcapacitorsatswitchingfrequency.Theequationtodeterminetheminimuminductancevalueisasfollows: (8) NoticeitisalreadyassumedthetotalESRisnogreaterthanRe_s,otherwisethetermunderthesquarerootwillbeanegativevalue. Example:Re=6mΩ,Vn=1.35V,∆Vc_s=72mV,∆Ic_s=10A,L=2µH (12) wheremin(Vin_max,17V)meansthesmallerofVin_maxand17V.ThereasonthistermisnotsimplyVin_maxisthattheswitchingfrequencydroopswithincreasingVinwhenVinishigherthan17V.SeeActiveFrequencyControl. Intheaboveequation,Reisusedinplaceoftheimpedanceoftheoutputcapacitors.Thisisbecauseinmostcases,theimpedanceoftheoutputcapacitorsattheswitchingfre-quencyisveryclosetoRe.Inthecaseofceramiccapacitors,replaceRewiththetrueimpedance. Example1:Vin_max=21V,Vn=1.6V,Vrip=26mV,Re=6mΩ,f=250kHz. Generallyspeaking,CmindecreaseswithdecreasingRe,∆Ic_s,andL,butwithincreasingVnand∆Vc_s.Maximumcapacitancecalculation ThissubsectionappliestoChannel1/CPUcorepowersupplyonly. IfthereisaneedtochangetheCPUcorevoltagedynami-cally(seeDynamicVIDChange),therewillbeamaximumoutputcapacitancerestriction.Iftheoutputcapacitanceistoolarge,itwilltaketoomuchtimefortheCPUcorevoltagetoramptothenewvalue,violatingthemaximumtransitiontimespecification.Theworst-casedynamicVIDchangeisonethattakesthelargeststepdownatnoload.Themaxi-mumcapacitanceasdeterminedbythewayLM2633imple-mentstheVIDchangecanbecalculatedasfollows: Example2:Vin_max=18V,Vn=1.35V,Vrip=20mV,Re=6mΩ,f=250kHz. (9) Example:tmax=100µs,Inlim=20A,Vold=1.6V,Vnew=1.35V,Iload=0. 27 Theactualselectionprocessusuallyinvolvesseveralitera-tionsofalloftheabovesteps,fromripplevoltageselection,tocapacitorselection,toinductancecalculations.BoththehighestandthelowestCPUcorevoltagesandtheirloadtransientrequirementsshouldbeconsidered.Ifaninduc-tancevaluelargerthanLminisselected,makesuretheCminrequirementisnotviolated.Priorityshouldbegiventopa-rametersthatarenotflexibleormorecostly.Forexample,ifthereareveryfewtypesofcapacitorstochoosefrom,itmay www.national.com LM2633OutputInductorSelection (Continued) beagoodideatoadjusttheinductancevaluesothatarequirementof3.2capacitorscanbereducedto3capaci-tors. Inductorripplecurrentisoftenthecriterionforselectinganoutputinductor.However,intheCPUcoreorGTLbusapplication,itisusuallyoflowerpriority.Thatispartlybe-causethestringentoutputripplevoltagerequirementauto-maticallylimitstheinductorripplecurrentlevel.Itisnever-thelessagoodideatodoublechecktheripplecurrent.Theequationis: current.InthecaseoftwoFETsinparallel,multiplythecalculatedonresistanceby4toobtaintheonresistanceforeachFET.InthecaseofthreeFETs,thatnumberis9.SinceefficiencyisveryimportantinamobilePC,havingthelowestonresistanceisusuallymoreimportantthanfullyutilizingthethermalcapacityofthepackage.Soitisprobablybettertofindthelowest-RdsFETfirst,andthendeterminehowmanyareneeded. Example:Tj_max=100˚C,Ta_max=60˚C,Rθja=60˚C/W,Vin_max=21V,Vn=1.6V,andIload_max=10A. (13) wheremin(Vin_max,17V)meansthesmallerofVin_maxand17V. Whatismoreimportantistheripplecontent,whichisdefinedbyIrip_max/Iload_max.Generallyspeaking,aripplecontentoflessthan50%isok.Toohigharipplecontentwillcausetoomuchlossintheinductor. Example:Vin_max=21V,Vn=1.6V,f=250kHz,L=1.7µH. Ifthelowest-on-resistanceFEThasaRds_maxof10mΩ,thentwocanbeusedinparallel.ThetemperatureriseoneachFETwillnotgotoTj_maxbecauseeachFETisnowdissipat-ingonlyhalfofthetotalpower. Alternatively,two22mΩFETscanbeusedinparallel,witheachFETreachingTj_max.ThismaylowertheFETcost,butwilldoublethebottomswitchpowerloss. TopFETSelection ThetopFEThastwotypesofpowerlosses-theswitchinglossandtheconductionloss.Theswitchinglossmainlyconsistsofthecross-overlossandthebottomdiodereverserecoveryloss.Itisratherdifficulttoestimatetheswitchingloss.Ageneralstartingpointistoallot60%ofthetopFETthermalcapacitytoswitchingloss.Thebestwaytofindoutisstilltotestitonbench.TheequationforcalculatingtheonresistanceofthetopFETisthus: Ifthemaximumloadcurrentis14A,thentheripplecontentis4.3A/14A=30%. Whenchoosingtheinductor,thesaturationcurrentshouldbehigherthanthemaximumpeakinductorcurrent.TheRMScurrentratingshouldbehigherthanthemaximumloadcurrent. MOSFETSelection BottomFETSelection Duringnormaloperations,thebottomFETisturnedonandoffatalmostzerovoltage.SoonlyconductionlossispresentinthebottomFET.ThebottomFETpowerlosspeaksatthemaximuminputvoltageandloadcurrent.ThemostimportantparameterwhenchoosingthebottomFETistheonresis-tance.Thelesstheonresistance,thelessthepowerloss.TheequationforthemaximumallowedonresistanceatroomtemperatureforagivenFETpackage,is: (15) whereTj_maxisthemaximumallowedjunctiontemperatureintheFET,Ta_maxisthemaximumambienttemperature,Rθjaisthejunction-to-ambientthermalresistanceoftheFET,andTCisthetemperaturecoefficientoftheonresistancewhichistypically4000ppm/˚C. Example:Tj_max=100˚C,Ta_max=60˚,Rθja=60˚C/W,Vin_min=14V,Vn=1.6V,andIload_max=10A. (14) whereTj_maxisthemaximumallowedjunctiontemperatureintheFET,Ta_maxisthemaximumambienttemperature,Rθjaisthejunction-to-ambientthermalresistanceoftheFET,andTCisthetemperaturecoefficientoftheonresistancewhichistypically4000ppm/˚C. Ifthecalculatedonresistanceissmallerthanthelowestvalueavailable,multipleFETscanbeusedinparallel.Ifthedesigncriterionistousethehighest-RdsFET,thentheRds_maxofeachFETcanbeincreasedduetoreduced www.national.com 28 SincetheswitchinglossusuallyincreaseswithbiggerFETs,choosingatopFETwithamuchsmalleronresistancesometimesmaynotyieldnoticeablelowertemperatureriseandbetterefficiency. ItisrecommendedthatthepeakvalueoftheVdsofthetopFETdoesnotexceed200mVwhenthetopFETconducts,otherwisetheCOMPxpinvoltagemayreachitshighclampvalue(2V)andcauselossofregulation. LM2633CurrentLimitSetting Whatisactuallymonitoredandlimitedisthepeakdrain-sourcevoltageofthetopFETwhenitisconducting.Theequationforcurrentlimitresistorisasfollows: tweenthetwochannels’inputcurrentpulses.TheequationforcalculatingthemaximumtotalinputrippleRMScurrentistherefore: (17) whereI1ismaximumloadcurrentofChannel1,I2isthemaximumloadcurrentofChannel2,D1isthedutycycleofChannel1,andD2isthedutycycleofChannel2. (16) whereIload_limisthedesiredloadcurrentlimitlevelandIilim_ministheminimumsinkcurrentattheILIM1pin.ThiscalculatedRilimvalueguaranteesthattheminimumcurrentlimitwillnotbelessthanIload_lim. Example:Iload_lim=16A,Irip_max=4.3A,Rds_max=18mΩ,Tj_max=100˚C,Iilim_min=8µA. Example:Iload_max_1=6.8A,Iload_max_2=2A,D1=0.09,andD2=0.1. Itisrecommendedthata1%tolerantresistorbeusedanditsresistanceshouldnotbelowerthanthecalculatedvalue. InputCapacitorSelection Inatypicalbuckregulatorthepowerlossintheinputcapaci-torsismuchlargerthanthatintheoutputcapacitors.Thatisbecausethecurrentflowingthroughtheinputcapacitorsisofsquare-waveshapeandthepeak-to-peakmagnitudeisequaltoloadcurrent.TheresultisalargerippleRMScurrentintheinputcapacitors. ThefactthatthetwoswitchingchannelsoftheLM2633are180˚outofphasehelpsreducetheRMSvalueoftheripplecurrentseenbytheinputcapacitors.Thatwillhelpextendinputcapacitorlifespanandresultinamoreefficientsys-tem.InamobileCPUapplication,boththeCPUcoreandGTLbusvoltagesareratherlowcomparedtotheinputvoltage.Thecorrespondingdutycyclesarethereforelessthan50%,whichmeanstherewillbenoover-lappingbe- Chooseinputcapacitorsthatcanhandle1.97ArippleRMScurrentathighestambienttemperature.Theinputcapacitorsshouldalsomeetthevoltageratingrequirement.Inthiscase,aSANYOOSCONcapacitor25SP33M,oraTaiyoYudenceramiccapacitorTMK325BJ475,willmeetbothre-quirements. Comparison:Ifthetwochannelsareoperatinginphase,therippleRMSvaluewouldbe2.52A.Theequationforcalculat-ingrippleRMScurrenttakesthesameformastheoneabovebutthemeaningsofthevariableschange.I1isthesumofthemaximumloadcurrents,D1isthesmallerdutycycleofthetwo,D2isthedifferencebetweenthetwodutycycles,andI2isthemaximumloadcurrentofthechannelthathaslargerdutycycle. Figure6showshowthereductionofinputrippleRMScur-rentbroughtbythe2-phaseoperationvarieswithloadcur-rentratioanddutycycles.Fromtheplots,itcanbeseenthatthebenefitofthe2-phaseoperationtendstomaximizewhenthetwoloadcurrentstendtobeequal.Anotherconclusionisthattheratioincreasesrapidlywhenonechannel’sdutycycleiscatchingupwiththeotherchannel’sandthenbe-comesalmostflatwhentheformerexceedsthelatter.SotheabsoluteoptimaloperatingpointintermsofinputrippleisatD1=D2=0.5andIload_max_1=Iload_max_2,whentheinputripplecurrentiszerofor2-phaseoperation. 29www.national.com LM2633InputCapacitorSelection (Continued) 20000884 FIGURE6.InputRippleRMSCurrentRatio:2-phasevs.In-phase ControlLoopDesign SamllSignalModel ThebuckregulatorsmallsignalmodelisshowninFigure7.Themodelisobtainedbyapplyingthecurrent-controlledPWMswitchderivedbyVorperianandbyomittingportionsthatareirrelevantinabucktopology. 20000838 FIGURE7.SmallSignalModelofBuckRegulatorsInthemodel,theDCoutputconductanceofthePWMswitchis: www.national.com30 LM2633ControlLoopDesign (Continued) γ=C(R+Re)+go(CRRe+L)+CsR δ=1+goR (30)(31) (18) Where D’=1−D (19) Forareasonabledesign,theoutputfilterhaslargeattenua-tionatlargecomplexfrequencies(i.e.largesvalues).Atsvalueswhere1/sCissmallerthanRe,thepowerstagecanbereducedtotheoneshowninFigure8. (20) 200008D5 Se=Vm•f (21) FIGURE8.SimplifiedPowerStageatHighFrequenciesThetransferfunctioncanbere-writtenas: (22) Ri=Rds•ρ(23) Seisthecorrectionrampslope,Snistheon-timeslopeofthecurrentsensewaveform,Vmisthepeak-peakvalueofthecorrectionramp,fisthePWMfrequency,Vinisinputvoltage,Riisthetransferresistancefrominductorcurrenttorampvoltage,RdsisthetopFETon-resistanceandρisthegainofthecurrentsenseamplifier. Thecoefficientofthefirstcurrentsourceis: (32) Where (33) (24) andthecoefficientofthesecondcurrentsourceis: (34) AlltheRetermsareomittedinthedenominatorbecausetheirvaluesarenegligiblecomparedtootherterms. Sincethedenominatorofthecontrol-outputtransferfunctionisathird-orderpolynomial,anditscoefficientsarepositiverealnumbers,thetransferfunctioneitherhasonerealpoleandtwocomplexpolesthatarecomplexconjugatesorhasthreerealpoles.Thusitcanbeapproximatelywritteninthefollowingformat: (25) TheoutputcapacitanceofthePWMswitchis: (26) TheDCresistanceoftheFETswitchesandoftheinductorisnotincludedherebecauseitsvalueisusuallymuchsmallerthantheloadresistance. Where Control-OutputTransferFunction Thecontrol(COMPxpin)voltageinapeak-currentmodeschemesuchasthatoftheLM2633isthecurrentcommand.Atanyinstantthatvoltagedeterminestheleveloftheinduc-torcurrent(fromanaverage-modelpointofview).Thecontrol-outputtransferfunctionisadescriptionofthesmall-signalbehaviorofthepowerstageandisobtainedbylettingthesmallsignalcomponentoftheinputvoltagebezero.Theexpressionforthecontrol-outputtransferfunctionis: (35) (36) and (37) where (27) Where α=LCsC(R+Re) β=goLC(R+Re)+Cs(CRRe+L) (28)(29) 31 (38) and www.national.com LM2633ControlLoopDesign (Continued) (39) Thevalueoffpcanbedeterminedbycomparingthedenomi-natorsofEquation(35)andEquation(27).Theresultis: (40) Fromtheaboveexpressions,itcanbeseenthatthecontrol-outputtransferfunctionhasthreepolesandonezero.Ofthethreepoles,oneisarealpole(fp)thatislocatedatlowfrequency,theothertwoareeithercomplexconju-gatesthatarelocatedathalftheswitchingfrequency(fn),orareseparatedrealpoles,dependingontheQvalue.WhenQvalueislessthan0.5,thetwohighfrequencypoleswillbecometworealpoles. FromEquation(34)itcanbetoldthatQwillbecomenega-tivewhenmc<1/(2D’).AnegativeQvaluemeansanunstablesystembecausethecontrol-outputtransferfunctionwillhavearight-half-planepole. Example:L=1.5µH,C=2mF,Re=9mΩ,Rds=10mΩ,Vin=10V,Vout=1.6V,R=0.4Ω.ForLM2633,f=250kHz,Se=0.25V,ρ=5. 20000863 FIGURE9.ExampleControl-OutputTransferFunction BodePlotItshouldbenotedthatloadresistanceonlychangesthelowfrequencygain.Thiscausesthelocationofthelowfre-quencypoletochangewithload. FrequencyCompensationDesign Thegeneralpurposetocompensatetheloopistomeetstaticanddynamicperformancerequirementswhilemain-tainingstability.Loopgainiswhatisusuallycheckedforsmall-signalperformance.Loopgainisequaltotheproductofcontrol-outputtransferfunction(orso-called’plant’)andtheoutput-controltransferfunction(i.e.thecompensationnetworktransferfunction).Differentcompensationschemesresultindifferenttrade-offsamongstaticaccuracy,transientresponsespeedanddegreeofstability,etc. Generallyspeakingitisagoodideatohavealoopgainslopethatis−20dB/decadefromaverylowfrequencytowellbeyondcross-overfrequency.Thecross-overfrequencyshouldnotexceedone-fifthoftheswitchingfrequency,i.e.50kHzinthecaseofLM2633.Thehigherthebandwidth,thepotentiallyfastertheloadtransientresponsespeed.How-ever,ifthedutycyclesaturatesduringtheloadtransient,thenfurtherincreasingthesmallsignalbandwidthwillnothelp.InthecontextofCPUcoreorGTLbuspowersupply,asmall-signalbandwidthof20kHzto30kHzshouldbesuffi-cientifoutputcapacitorsarenotjustMLCs. Sincethecontrol-outputtransferfunctionusuallyhasverylimitedlowfrequencygain(seeFigure9),itisagoodideatoplaceapoleinthecompensationatzerofrequency,sothatthelowfrequencygainespeciallytheDCgainwillbeverylarge.AlargeDCgainmeanshighDCregulationaccuracy(i.e.DCvoltagechangeslittlewithloadorlinevariations).Therestofthecompensationschemedependshighlyontheplantshape.IfatypicalshapesuchasshowninFigure9isassumed,thenthefollowingcanbedonetocreatea−20dB/decaderoll-offoftheloopgain. Placethefirstzeroatfp,thesecondpoleatfz,andthesecondzeroatfn,thentheresultingloopgainplotwillbeof−20dB/decslopefromzerofrequencyuptofn(halftheswitchingfrequency). Rj=10mΩx5=50mΩSe=0.25Vx250kHz=62.5mV/µs fn=250kHz÷2=125kHz TheresultinggainplotisshowninFigure9astheasymptoticplot.TheplotsoftheactualgainandphaseascomputedbyEquation(27)arealsoshown. Figure10showsthegainplotofsuchatwo-poletwo-zero(moreaccurately,alag-lag)compensationnetwork,wherefz1,fz2andfp2arethefirstzero,secondzeroandsecondpolefrequencies.Thefirstpolefp1islocatedatzerofre-quency. www.national.com32 LM2633ControlLoopDesign VID4:00000000001000100001100100001010011000111010000100101010010110110001101011100111110000100011001010011101001010110110101111100011001110101101111100111011111011111 VDAC(V)2.001.951.901.851.801.751.701.651.601.551.501.451.401.351.30NOCPU1.2751.2501.2251.2001.1751.1501.1251.1001.0751.0501.0251.0000.9750.950.9250.900 R125k25k25k25k25k25k25k25k25k25k25k25k25k25k25k25k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k12.5k (Continued) TABLE5.R1andR2Valuesvs.VID R217.1k18.4k17.4k21.4k19.3k22.0k22.1k30.0k24.5k27.3k26.0k34.6k29.3k36.0k36.4k64.3k23.2k25.7k24.5k32.1k27.5k33.3k33.6k56.2k39.6k47.4k43.4k75.0k53.7k81.8k83.7k r= R2/(R1+R2) 0.410.420.410.460.430.470.470.550.490.520.510.580.540.590.590.720.650.670.660.720.690.730.730.820.760.790.780.860.810.870.871 FIGURE11.CompensationNetwork Thegainofthecompensationnetworkcanbecalculatedasthefollowing.IftheESRzerofrequencyfzishigherthanthelowfrequencypolefp,thenthereshouldbea−20dB/decadesectionfromfp(310Hz)tofz(8.8kHz)intheplantgainplot,suchasshowninFigure9.Findthefrequencywherethissection(ortheextensionofthissection)crosses0dBbyusingthefollowingequation: fc_o=M•fp(41)Ifthedesiredlooptransferfunctioncross-overfrequencyis fc_c,thenthegainofthecompensationnetworkatfpshouldbe: 2000086520000864 FIGURE10.2-Pole2-Zero(lag-lag)NetworkAsymptotic GainPlotToachievethegainshapeinFigure10,ZcinFigure7shouldtaketheformoftwoRCbranchesinparallel,asshowninFigure11.Inthescheme,C1andR3formthefirstzerofz1,C2andR3formthesecondpolefp2,andC2andR4formthesecondzerofz2. ∞ Thesignalpathfromoutputvoltagetocontrolvoltageisthefeedbackpath.Ittypicallycontainsavoltagedivider,anerroramplifierandacompensationnetwork.ThoseareshownInFigure7asR1,R2,thegmamplifier,andZc.ForChannel1oftheLM2633,sinceanR-2Rladdernetworkisused,R1andR2valueschangewiththeVIDsetting.Forinformationregardingtheirvaluesandratios,refertoTable5.ForChan-nel2,R1andR2aresimplytheexternalvoltagedividerresistors. (42) TodeterminethecomponentvaluesinFigure11,thefollow-ingequationscanbeused: (43) whereBisthedesiredgainatfz1,andgmisthetranscon-ductanceoftheerroramplifier. (44) 33www.national.com LM2633ControlLoopDesign (Continued) (45) (46) Backtothepreviousexample.LetB=K,fz1=fp,fp2=fz,fz2=fn,then: fc_o=5.1x310Hz=1581Hz 20000877 FIGURE13.ExampleLoopTransferFunctionIfashorterrecoverytimeisdesiredduringaloadtransient,fz1canbeincreasedsothatthegainofthelooptransferfunctionbecomeshigher.However,trynottoletfz1behigherthanthedesiredcross-overfrequency,otherwisephasemar-gincanbetoolow.Figure14showsasituationwherefz1isplacedatahigherfrequencythanthefp,whichresultsina−40dB/decsectionbeforethecross-overfrequency.Noticethephasemarginislower. ThecorrespondingBodeplotsofthecompensationnetworkandthelooptransferfunctionareshowninFigure12andFigure13respectively. 200008D6 FIGURE14.HigherLowFrequencyGain Sometimestheslowtransientresponseiscausedbythecurrentsourceandsinkcapabilityoftheerroramplifier.Reducingthevalueofthecompensationcapacitorhelps,butmakesurethesmall-signalloopisstable. Thepowerstagecomponentselectioncanbesignificantlydifferentfromtheexamplevalues.Figure15showshowthetwohighfrequencypolesofacurrent-mode-controlbuckregulatorchangewiththeQvalue. 20000876 FIGURE12.ExampleCompensationTransferFunctionItcanbeseenfromFigure13thatthecrossoverfrequencyis20kHz,andthephasemarginisabout84degrees. OnethingthatshouldbepointedoutisthisBodeplotisonlyforthe0.4Ωload.Thatis,whenloadcurrentis4A.Ifloadcurrentislowerthan4A,theportionofthegainplotfromthecorrespondingfpto310Hzwillbe−40dB/dec.Ifloadcurrentishigherthan4A,thentheportionofthegainplotfrom310Hztofpwillbeflat.However,thisusuallydoesnothavemucheffectonthecross-overfrequencyandphasemarginbecauseithappensatlowfrequencies. www.national.com34 LM2633ControlLoopDesign (Continued) (48) whereH(s)isthecompensationtransferfunctiondefinedby: (49) ItcanbeseenfromEquation(47)thatifmcisequalto1/(2D’)+0.5,thentheopen-loopaudiosusceptibilityiszero.Unfortunately,thetransferfunctionisrathersensitivetothevalueofmcaroundthecriticalvalueandthusthisphenom-enonisoflittlevalue. 20000878 FIGURE15.HowControl-OutputTransferFunction ChangeswithQValuesWhenQishigherthan0.5,therewillbeadouble-poleathalftheswitchingfrequencyfn.WhenQislowerthan0.5,thedouble-poleisdampedandbecomestwoseparatepoles.ThelowertheQvalueis,thefartherapartthetwopolesare.WhenQistoolow(suchasQ=0.05orlower),oneofthetwohighfrequencypolesmaymovewellintothelowfre-quencyregion.WhenQistoohigh(suchasQ=5orhigher),therewillbesignificantpeakingathalftheswitchingfre-quencyandthephasewillrapidlygoto−180˚nearit.Thistypicallyresultsinalowercross-overfrequencysothatthepeakingintheloopgainiswellbelowthe0dBline. Qisafunctionofdutycycleandthedeepnessoftherampcompensation(mc).SeeEquation(34).Thelargerthedutycycle,thehighertheQvalue.Thedeepertherampcompen-sation,thelowertheQvalue.Whentheinductorcurrentrampistoomuchsmallerthanthecompensationramp,oneofthetwohighfrequencypoleswillmovefarintothelowfrequencyregionandformadouble-polewiththeexistinglowfrequencypolefp.Thatmakesitavoltage-modecontrol.Therampcompensationbecomesdeeperwheninductanceisincreased,orinputvoltageisdecreased,orsenseresis-tanceisdecreased. InthecaseofChannel1ofLM2633,ifL=1to3µH,Vin=5to24V,Vo=0.925to2V,Rds=5to20mΩ,theQvaluewillbebetween0.65and0.2. AudioSusceptibility Audiosusceptibilityisthetransferfunctionfrominputtooutput.Inatypicalpowersupplydesign,itisdesirabletohaveasmuchattenuationinthattransferfunctionaspos-siblesothatnoiseappearingattheinputhaslittleeffectontheoutput.Theopen-loopaudiosusceptibilitygivenbythemodelinFigure7is: 20000882 FIGURE16.ExampleAudioSusceptibilityGainTheopen-loopandclosed-loopaudiosusceptibilityofthepreviousexampleisshowninFigure16.Itcanbetold,bothfromthemodelandfromEquation(47),thatopen-loopgainofaudiosusceptibilityisjustalevelshiftoftheloopgain.Closed-loopaudiosusceptibilitystartstodepartfromitsopen-loopcounterpartwhenfrequencydropsbelowthecross-overfrequency. AdjustingtheOutputVoltagesoftheSwitchingChannels Channel1outputvoltageisnormallyadjustedthroughtheVIDpins.Channel2outputvoltageisadjustedthroughanexternalvoltagedivider,asshowninFigure17. 200008B7 FIGURE17.SettingtheCh2OutputVoltageTheequationtofindthevalueofR2whenR1hasbeenselectedis: (47) Theclosed-loopaudiosusceptibilityissimply: (50) whereVfb2isequaltotheinternalreferencevoltagecon-nectedtothenon-invertinginputoftheChannel2error 35 www.national.com LM2633ControlLoopDesign (Continued) amplifier,andIfb2isthecurrentdrawnbytheFB2pin.TheVfb2andIfb2haveatypicalvalueof1.24Vand18nArespectively. Example:Vout2=1.5V,R1=10kΩ. Sinceanop-ampisanactivedevice,paycloseattentiontoitsstartupandshutdownbehavior.Makesurethatitdoesnotcreateaproblemduringthosetimes. DesigningaPowerSupplywithoutaLoadTransientSpecification Manytimestheloadtransientresponseofabuckregulatorisnotacriticalissue.Inthatcase,theselectionofthepowerstagecomponentscanstartfromtheinductorripplecurrent.Choosingthepeak-to-peakripplecurrenttobe30%ofthemaximumloadcurrentisoftenagoodstartingpoint.Thentheinductancevaluecanbedeterminedbyripple,switchingfrequencyandinputandoutputvoltages.ByrearrangingEquation(13),theinductancevaluecanbecalculatedasfollows: (51) Tocalculatethetotalsystemtolerance,usethefollowingequation: (52) whereφisthetoleranceoftheChannel2referencevoltage,andσisthetoleranceoftheresistors. Example:Vout2=3.3V,feedbackresistorshavea±1%tolerance. (54) Example:Vin_max=21V,Vn=1.6V,Iload_max=10A. (53) Thatmeansthe3.3Voutputvoltagewillhavea±2.96%toleranceoverthe(LM2633die)temperaturerangeof0˚Cto125˚C. Channel2outputvoltageshouldnotgoabove6Vinpulse-skipmode.ThatisbecausetheSENSE2pincannottakeavoltagehigherthan6V.However,ifforce-PWMop-erationisthechosenoperatingmode,thentheSENSE2pincanbegroundedandtherewillbenolimitationtoChannel2outputvoltage. IfthedesiredChannel1voltageishigherthan2V,anop-ampandavoltagedividercanbeusedtoexpandthevoltagerange,asshowninFigure18. Theoutputcapacitorscanbechosenbasedontheoutputvoltageripplerequirement.Ifthereisnospecificrequire-ment,thena±1%ripplelevelmaybeagoodstartingpoint.Theequationfordeterminingtheimpedanceoftheoutputcapacitorsis: (55) IftheESRzerofrequencyofthecapacitorislowerthantheswitchingfrequency,suchasthecaseofaluminum,tantalumandOSCONcapacitors,thentheoutputcapacitorsarecho-senbytheESRvalue.Otherwise,suchasinthecaseofceramiccapacitors,theoutputcapacitorsarechosenbythecapacitance.Theequationis: (56) Basicallymakesurethattheproductoftheimpedanceofthecapacitorsandtheripplecurrentdoesnotexceedtheripplevoltagerequirement. Example:Vn=1.6V,Irip=3A. 200008B6 FIGURE18.HowtoMakeVOUT1HigherThan2VItisrecommendedthattheVIDxpinsbealltiedtogroundsothattheDACissetat2.00V.Thatwillreducethetotaltolerance.TheequationsusedtocalculateChannel2’sfeed-backresistorsandtotaltolerancestillhold,exceptthatthereferencevoltageVfb1is2.00Vinsteadof1.24V.Channel1canoperateonlyinforce-PWMmodewhenitisconfiguredasFigure18. (57) Ifceramiccapacitorsarepreferred,thentheminimumca-pacitanceis: (58) www.national.com36 LM2633ControlLoopDesign (Continued) Ifaluminum,tantalumorOSCONcapacitorsaregoingtobeused,makesurethecombinedESRisnotgreaterthan10.6mΩ. Dependingontheapplication,adifferentprioritymaybeassignedtotheselectionofcomponents.Forexample,toachievea10.6mΩcombinedESR,itwouldrequire6low-ESRtantalumcapacitors,whichcanbequiteexpensive.Iftheinductorsizeisallowedtoexpand,thenahigherinductancevaluecanbeusedsothatripplecurrentisre-ducedandimpedanceofthecapacitorattheswitchingfre-quencycanbehigher.Itisoftennecessarytogothroughseveraliterationsbeforeareasonablecombinationoftheinductorandcapacitorsisachieved. Noticetheaboveprocedureisgivenwithoutanyconsider-ationofaloadtransient,whetherexpectedorunexpected.Thepowersupplydesignermaybetemptedtousea100µFceramiccapacitorastheonlyoutputcapacitorintheaboveexample.Thatmaybefineinadesignthathasaverystaticload.However,shouldtherebealargefaultloadcurrent(whichisnotenoughtotriggerUVP)andiflaterthatcondi-tionissuddenlylifted,theoutputmayseeasevereovervoltage.AlthoughtheLM2633willshutdownimmediatelyuponseeingtheover-voltageevent,theloadcouldhavebeendamagedalready.Anotherconcernwithpureceramicoutputcapacitorsissoftstart.Itmaybenecessarytoin-creasethesoftstarttimesothattherewillbeminimumovershootattheendofsoftstart.Sowhenalargeinduc-tanceandasmallcapacitancearechosen,careshouldbegiventotheabovesituations. Iftheloadcurrentgoesfromoneleveltoanotherduringnormaloperations,adesignwithlesscapacitancetendstohavemoreoutputvoltageexcursionandrecovermoreslowlythanonewithmorecapacitance.Fromthetime-domainviewpoint,thatisbecauselesscapacitanceislesseffectiveanenergybufferwhentheloadcurrentistemporarilydifferentfromtheinductorcurrent.Fromthefrequency-domainviewpoint,thatisbecausetheoutputim-pedanceoftheregulatorishigher. Forpowersuppliesthatdon’thaveastringentloadtransientrequirement,polymeraluminumcapacitorscanbeusedaswellaslow-ESRtantalumcapacitors.Thesepolymeralumi-numcapacitorsaresurfacemount,long-life,ignitionfreeandtypicallyhaveverylowESRvalues.Forexample,CornellDubilier’sESREandESRDpolymeraluminumchipcapaci-torshaveESRvalueaslowas6mΩandcapacitanceupto270µF(http://www.cornell-dubilier.com). Panasonicalsooffersspecialtypolymeraluminumcapaci-tors.Panasonic’sUEseriesofferscapacitanceupto270µF,andvoltageratingupto8VDC. FortheTypicalApplicationcircuit,ifthereisnostringentloadtransientrequirementonChannel1,C2canbereplacedbyasinglepolymeraluminumcapacitor,suchasESRE271M02RfromCornellDubilier.Thefrequencycom-pensationshouldbe:C14=4.7nF,R9=7.5kΩ.C15andR10arenotnecessary.Noticethatthevoltageratingofthatcapacitorisonly2VDC. DesigningAroundthePulse-SkipMode IftheFPWMpinispulledtologichigh,theLM2633operatesinpulse-skipmode.Inthismode,whentheloadislightenough,theLM2633startstoskippulses.SeePulse-SkipModeinOperationDescriptions. Inpulse-skipmode,theapparentswitchingfrequencyislowerthanthefrequencytheregulatorwouldrunatifitwereinforce-PWMmode.Theactualfrequencydependsontheload,thelightertheloadthelowerthefrequency. Theloadatwhichpulse-skippingstartstohappencanbedeterminedfromthefollowingformula: (59) Example:Irip=3A. Sincethecriticalloadcurrentcompletelydependsontheinductorripplecurrent,theinductancevaluecannotbearbi-traryifaccuratecontrolofthevalueofthecriticalloadisdesired. WhentheFPWMpinispulledhigh,theregulatorentersthediscontinuousconductionmode(DCM)whentheloadislightenoughsothattheinductorcurrentgoestozerobeforetheendofeachswitchingcycle.ThecriticalloadcurrentvaluefortheregulatortoenterDCMis: (60) NoticeinDCMmodetheFETsstillswitcheveryclockcyclebutthedutycycleshrinksasloadcurrentdecreases.WhentheloadcurrentgoesbelowIload_skip,theregulatorentersthepulse-skipmode.SotheDCMregionisaverynarrowone. So,whenthepeak-peakripplecurrentis3A,theDCMhappensonlywhenloadcurrentfallsinthe1.1Ato1.5Arange.Abovethatrange,theregulatorisincontinuouscon-ductionmode(CCM),andbelowthatrange,theregulatorrunsinpulse-skipmode. DesigningaLinearRegulatorwithChannel3 Channel3oftheLM2633canbeusedtodriveanexternalNPNtransistorandprovidelinearregulation.SeeFigure19. 200008A7 FIGURE19.Channel3ControllinganLDO Theoutputvoltageisadjustedthroughthevoltagedivider,andtheequationis: 37www.national.com LM2633ControlLoopDesign (Continued) TheerroramplifierofChannel3hasaDCgainof83dB,andaunity-gainbandwidthof200kHz.SeetheplotsinFigure21. (61) whereVfb3isequaltothereferencevoltageconnectedtothenon-invertinginputoftheerroramplifierandhasatypicalvalueof1.24V,andIfb3isthebiascurrentdrawnbytheFB3pinandhasatypicalvalueof70nA. Example:Theintendedoutputvoltageis2.5V.FindtheappropriateR2valueifR1ischosentobe10.0kΩ. (62) TheG3voltagecannotexceed4V,andtheG3currentsourcingcapabilitydecreaseswithincreasingG3pinvolt-age.Seethetypicalcurves.Itissuggestedthatthemaxi-mumoutputvoltagedoesnotexceed3VwhenanNPNpasstransistorisused.IfanN-channelFETistobeused,makesuretheFETcanbefullyturnedonbeforeG3goesto4V.TherearetwofactorstoconsiderwhenselectingQ1.FirstistheDCcurrentgainβ,secondispowerdissipation. Foracertainloadcurrent,thelowertheβvalue,themorebasecurrentisnecessarytomaintainregulation.SincethebasecurrentcomesfromVINpinthroughinternallinearregulation,alargebasecurrentsignificantlyincreasespowerconsumptionintheLM2633andhurtslight-loadefficiency,particularlywhenVINisrelativelyhigh.Thereforeatransistorwithalargeβvalueispreferred. ThemaximumpowerconsumptioninQ1is: Ploss=Iload_max•(Vin2_max−Vout3_min)(63) Example:Theinputvoltageofthelinearregulatoris3.3V±5%,themaximumloadcurrentis150mA,andtheoutputvoltageis2.5V.SinceChannel3oftheLM2633hasa±2%toleranceovertemperature,andthevoltagedividercontrib-utesanother±1%,sothetotaloutputvoltagetoleranceis±3%.SeeEquation(52)forthecalculationoftotaltolerancewhenavoltagedividerisused. Ploss=150mAx(3.3Vx1.05−2.5Vx0.97)=156mWIftheambienttemperatureis65˚Corless,aSOT-23pack-ageshouldbeabletohandlethismuchpower. SinceChannel3affectsUVP,ifitisnottobeused,properterminationofthepinsshouldbemade.OnegoodwayistotieFB3toVLIN5,andtieOUT3andG3togetherandleavethemfloating.SeeFigure20. 20000895 FIGURE21.VFB3-to-VG3TransferFunction(theoretical)ItisnoteasytomodeltheloopfrequencyresponseofanNPNlinearregulator.Thebestwayisstilltomeasuretheloopgainunderdifferentloadconditionsonbench.Asareferencepoint,foranLDOsetat2.5VthatusesanMMBT2222asthepasstransistor,a1µFceramicastheoutputcapacitorandata170mAload,thebandwidthisabout107kHz,withaphasemarginof71˚andagainmarginofabout10dB. Thehigherthebandwidth,thelesstheoutputcapacitanceisneededtohandletheloadtransient.However,formostapplications,stabilityistheonlyconcern. PCBLayoutGuidelines Itisextremelyimportanttofollowtheguidelinesbelowtoensureacleanandstableoperation.1.Useafour-layerPCB. 2.KeeptheFETsasclosetotheICaspossible. 3.Keepthepowercomponentsontherightside(pins25 through48)oftheICandlow-powercomponentsontheleftside. 4.Analoggroundandpowergroundshouldbeseparate planesandshouldbeconnectedatasinglepoint,pref-erablyatthePGNDxandGNDpinsanddirectlyunder-neaththeIC. 5.TheVDDxpindecouplingcapacitorshouldbecon-nectedtothepowergroundplane. 6.Inputceramiccapacitorsshouldbeplacedverycloseto theFETsandtheirconnectionstothedrainofthetopFETandtothesourceofthebottomFETshouldbeasshortaspossibleandshouldnotgothroughpowerplaneorgroundplane. 7.HDRVx,SWxtracesshouldbeasclosetoeachotheras possibletominimizenoiseemission.Ifthesetwotracesarelongerthan2centimeters,theyshouldbefairlywide,suchas50mil. 8.KeepKSxtraceasshortaspossible.Otherwise,usea traceof50milorwider. 9.ILIMxtraceshouldbekeptawayfromnoisynodessuch astheswitchnode. 10.ItispreferabletohaveashorterandwiderFBxtrace thanalongerandnarrowerone. 38 200008A8 FIGURE20.WhenCh.3isNotinUse www.national.com LM2633PCBLayoutGuidelines (Continued) 11.VLIN5pindecouplingcapacitorshouldbeconnectedto thelocalanalogground.12.Compensationcomponentsshouldbeplacedcloseto theIC,within1to2centimeters. 13.Channel3shouldusetheanalogground,notthepower ground,toavoidpotentialnoisecouplingfromtheswitchingchannels.AnexampleofthepowerstagelayoutisshowninFigure22. 20000883 FIGURE22.PCBLayoutExample 39www.national.com LM2633AdvancedTwo-PhaseSynchronousTripleRegulatorControllerforNotebookCPUsPhysicalDimensions unlessotherwisenoted inches(millimeters) 48-LeadTSSOPPackageOrderNumberLM2633MTDNSPackageNumberMTD48 LIFESUPPORTPOLICY NATIONAL’SPRODUCTSARENOTAUTHORIZEDFORUSEASCRITICALCOMPONENTSINLIFESUPPORTDEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFTHEPRESIDENTANDGENERALCOUNSELOFNATIONALSEMICONDUCTORCORPORATION.Asusedherein:1.Lifesupportdevicesorsystemsaredevicesorsystemswhich,(a)areintendedforsurgicalimplantintothebody,or(b)supportorsustainlife,andwhosefailuretoperformwhenproperlyusedinaccordancewithinstructionsforuseprovidedinthelabeling,canbereasonablyexpectedtoresultinasignificantinjurytotheuser. NationalSemiconductorCorporationAmericas Email:support@nsc.com NationalSemiconductorEurope Fax:+49(0)180-5308586Email:europe.support@nsc.com DeutschTel:+49(0)6995086208EnglishTel:+44(0)8702402171FrançaisTel:+33(0)141918790 2.Acriticalcomponentisanycomponentofalifesupportdeviceorsystemwhosefailuretoperformcanbereasonablyexpectedtocausethefailureofthelifesupportdeviceorsystem,ortoaffectitssafetyoreffectiveness. NationalSemiconductorAsiaPacificCustomerResponseGroupTel:65-2544466Fax:65-2504466 Email:ap.support@nsc.com NationalSemiconductorJapanLtd. Tel:81-3-5639-7560Fax:81-3-5639-7507 www.national.com Nationaldoesnotassumeanyresponsibilityforuseofanycircuitrydescribed,nocircuitpatentlicensesareimpliedandNationalreservestherightatanytimewithoutnoticetochangesaidcircuitryandspecifications. 因篇幅问题不能全部显示,请点此查看更多更全内容