铁道电气化技术常见问题及解决对策
【摘要】由于电气化机车的效率高、功率大、加速快、爬坡能力强以及对环境造成的污染小等优点使得电气化铁道发展很快,在国内已经普遍采用,但是,在实际的运行中,还是存在着许多问题,本文将从铁道电气化技术方面对这些问题加以分析,并提出解决对策。
【关键词】电气化机车;铁道电气化技术;常见问题
1.什么是铁道电气化技术以及我国应用电气化铁道的情况
铁道电气化技术主要是对铁道电气化设备进行维护管理以及应用开发,以适应电气化铁路供电系统及其装置的设计、运输与施工技术管理。我国应用铁道电气化技术至今已经有四十年的历史,我国电气化铁路目前采用的是工频单相交流电力牵引制,将国家电力系统输送的电能以电能牵引供电设备变换为适合电力机车使用的形式,所以电气化铁路的两大主要装备就是牵引供电设备和电力机车,铁路上的基础设施和其他装备都是为了配合这两种设备的使用。牵引供电系统就是把电力系统的电能传送给电力机车的电力装置,又名电气化铁路的供电系统,两大组成部分是牵引变电所和接触网。牵引变电所的任务是将电力系统三相电压降低,将电力系统输电线路电压从110kV(或220kV)降到27.5kV,同时以单相方式馈出将电能送至接触网,降低电压是由牵引变压器来实现的,它是牵引变电所的“心脏”;接触网是沿铁路沿线架设的特殊电力线路,电力机车升弓后便可通过与之滑动摩擦接触而取得电能,用以牵引列车。
在供电方式上我国均采用单边供电方式,主要包括直接供电方式简称TR供电方式,目前有BT、AT和DN供电方式;吸流变压器(BT)供电方式;自耦变压器(AT)供电方式;直供+回流(DN)供电方式。在复线区段还可以提高末端网压,将上下行接触网通过分区亭联接,实现“并联供电”,如果牵引变电所发生故障,相邻变电所还可进行“越区供电”,我国的电气化铁路多数采用可控硅整流器电力机车,这种机车不但结构简单、牵引性能好、运行可靠、维修方便,而且各项经济技术指标较高。目前,国产主型电力机车为SS(韶山)型,SS1、3、4、6、6B、7和7B型均为客货两用型,近年来随着列车提速和高速铁路的发展,研制开发了SS7C、7D、7E、SS8和SS9型客运电力机车,以及DJ型(交—直—交)客运电力机车。此外,我国还先后引进过法(6Y、6G、8K)、日(6K)、德(DJ1)和前苏联(8G)等国的电力机车。
2.铁道电气化技术常见的问题
2.1 电分相方面
(1)由于我国列车速度大幅提高,因此在电气化铁路普遍采用的是锚段关节式电分相,而不是传统的器件式电分相,关节式电分相的绝缘锚段分为三跨、四跨和五跨三种形式,由于每个关节跨距的长短不一样,因此用来衔接两个关节
的布置也不相同,关节式电分相也包括了五跨、七跨、八跨等等多种形式,关节式电分相的共同特点就是组成部分都是两个绝缘锚段关节和一段接触网中性区,电气绝缘的实现条件是在空气绝缘间隙实现的,因此列车在运行到关节式电分相的时候,乘务员就必须要将机车主断路器断、合电操作以及将其他受电弓下降,在高速列车运行中需反复操作,这样会加强乘务员的劳动强度,一旦遗忘或疏忽,就会造成接触网相间短路,形成供电事故,运输中断。
(2)在机车高速运行的过程中,升降受电弓会对接触网的安全运行造成威胁,发达国家以增加高速机车的中性区长度来解决这个问题,整列电动车组两手电弓的距离小于允许多弓运行的最小距离。但我国由于路网不发达,客货混运、高低速列车混跑的情况并不少见,如果采用较长的电分相中性区,会同时影响高低速列车的运行速度,而且,即使采用较长的电分相中性区,有时也会发生电力机车停在分相无电区的情况。
2.2 供电方式方面
(1)我国应用最广泛的供电模式是自耦变压器(AT)供电模式,受列车运行位置影响,为了降低绝缘标准,从55kV降低到27.5kV,这种供电模式虽然省却了一套设备容量,却失去了牵引网的供电能力和防护干扰能力。AT模式的导线截面相同而且边界为最大载流,假设日本模式供电能力为1,直供方式为0.5,而AT模式则介于二者之间,一个供电臂中的AT段越少,供电能力损失越显著。
(2)当发生接触网T与负馈线F短路,如果牵引变电所出口的接触网断路器与负馈线断路器也是联动的而不是同时跳开,在短时间内,先跳开的断路器就会承受55kV电压。如果另一个出口断路器拒动,那么,另一个断路器就会长时间的承受55kV电压。而且为了适应AT模式的轨一地接线要求,牵引变压器次边不但需要引出中间抽头,而且两组绕组还需要进行特殊设计和容量优化,设计制造难度和造价都增加了。
2.3 牵引供电系统方面
(1)由于变压器、牵引电机以及电力电子器件的非线性和非线性调节,同时电力机车的基波电流滞留后电压一定的角度,因此机车的电流中有大量的谐波成分,这些谐波在三相供电系统中不对称分布,时间性和随机性很强,导致了无功功率和谐波电流的存在,使得变压器、电力线路以及旋转电机的附加损耗加大,引起局部过热,金属疲劳和机械损坏,缩短设备的使用寿命,在串联和并联谐波比例比较高的牵引变电站附近发生电网和电容器组的并联谐振,造成电容器组的损坏,使得继电器出现频繁发动,误动、拒动等现象,为了弥补无功功率对电力系统的损失,铁道部门每年都要支付大量的额外费用给电力部门。
(2)牵引变电所采用单向联接、单相V形联接和Y,d-11这三种基本接线方式时,会在三相电力系统产生负序电流,除了会产生无功功率,还会降低变压器的额定输出功率,运行效率低,引起旋转电机的附加发热和振动,对安全运行造成危害,而且负序电流流过电力系统时,不仅占用输电系统的容量,还会造成
电能损失,电气化铁道产生的大量负序侵入时会导致以负序电流或负序电压为动作条件的继电保护装置的误动作,引起供电中断。
3.铁道电气化技术常见问题解决方案
因篇幅问题不能全部显示,请点此查看更多更全内容