光电耦合器件简介
光电偶合器件(简称光耦)是把发光器件(如发光二极体)和 光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理 图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极 体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和 导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。
图一 最常用的光电耦合器之内部结构图 三极管接收型 4脚封装
图二 光电耦合器之内部结构图 三极管接收型 6脚封装
图三 光电耦合器之内部结构图 双发光二极管输入 三极管接收型 4脚封装
图四 光电耦合器之内部结构图 可控硅接收型 6脚封装
图五 光电耦合器之内部结构图 双二极管接收型 6脚封装
光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下 几方面的原因:
(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的 幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2) 光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器 馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信 号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
(4)光电耦合器的回应速度极快,其回应 延迟时间只有10μs左右,适于对回应速度要求很高的场合。
光电隔离技术的应用
微机介面电路中的光电隔离
微机有多个输入埠,接收来自远处现场设备 传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主 要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通 路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。
图六 光电耦合器接线原理
对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。
功率驱动电路中的光电隔离
在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器 件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应 用光耦合器将微机控制信号与可控硅触发电路进行隔离。电路实例如图7所示。
图七 双向可控硅(晶闸管)
在马达控制电路中,也可 采用光耦来把控制电路和马达高压电路隔离开。马达靠MOSFET或IGBT功率管提供驱动电流,功率管的开关控制信号和大功率管之间需隔离放大级。在光耦 隔离级—放大器级—大功率管的连接形式中,要求光耦具有高输出电压、高速和高共模抑制。
远距离的隔离传送
在电脑应用系统中,由于测控系统与被测和被控设备之间不可避免地要进行长线传输,信号在传输过程中很易受到干扰,导致传输信号发生畸变或失真; 另外,在通过较长电缆连接的相距较远的设备之间,常因设备间的地线电位差,导致地环路电流,对电路形成差
模干扰电压。为确保长线传输的可靠性,可采用光电 耦合隔离措施,将2个电路的电气连接隔开,切断可能形成的环路,使他们相互独立,提高电路系统的抗干扰性能。若传输线较长,现场干扰严重,可通过两级光电 耦合器将长线完全“浮置”起来,如图8所示。
图八 传输长线的光耦浮置处理
长线的“浮置”去掉了长线两端间的公共地线,不但有效消除了各电路的电流经公共地线时所产生杂讯电压形成相互窜 扰,而且也有效地解决了长线驱动和阻抗匹配问题;同时,受控设备短路时,还能保护系统不受损害。
过零检测电路中的光电 隔离
零交叉,即过零检测,指交流电压过零点被自动检测进而产生驱动信号,使电子开关在此时刻开始开通。现代的零交叉技术已与 光电耦合技术相结合。图9为一种单片机数控交流调压器中可使用的过零检测电路。
图九 过零检测
220V交流电压经电阻R1限流后直接加到2个反向并联的光电耦合器GD1,GD2的输入端。在交流电源的正负半 周,GD1和GD2分别导通,U0输出低电平,在交流电源正弦波过零的瞬间,GD1和GD2均不导通,U0输出高电平。该脉冲信号经反闸整形后作为单片机 的中断请求信号和可控矽的过零同步信号。
注意事项
(1)在光电耦合器的输入部分和输出部分必须分别采用独立的电源,若两端共用一个电源,则光电耦合器的隔离作用将失去意义。
(2)当用光电耦合器来隔离输入输出通道时,必须对所有的信号(包括数位量信号、控制 量信号、状态信号)全部隔离,使得被隔离的两边没有任何电气上的联系,否则这种隔离是没有意义的。
光电耦合器
(转http://www.18ic.com/ 一个电子器件网)
光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与 受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电” 转换。以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具
有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在 数字电路上获得广泛的应用。通常的光电耦合器由于它的非线性,因此在模拟电路中的应用只 限于对较高频率的小信号的隔离传送。普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。近年来问世的线性光耦合器能够传输连续变 化的模拟电压或模拟电流信号,使其应用领域大为拓宽。
光耦合器的性能特点
光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器 (SSR)、仪器仪表、通信设备及微机接口中。由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰 电压较小,它所能提供的电流并不大,不易使半导体二极管发光;由于光电耦合器的外壳是密封的,它不受外部光的影响;光电耦合器的隔离电阻很大(约 1012Ω)、隔离电容很小(约几个pF)所以能阻止电路性耦合产生的电磁干扰。线性方式工作的光电耦合器是在光电耦合器的输入端加控制电压,在输出端会 成比例地产生一个用于进一步控制下一级的电路的电压。线性光电耦合器由发光二极管和光敏 三极管组成,当发光二极管接通而发光,光敏三级管导通,光电耦合器是电流驱动型,需要足够大的电流才能使发光二极管导通,如果输入信号太小,发光二极管不 会导通,其输出信号将失真。在开关电源,尤其是数字开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达 到精密稳压目的。
光耦合器的技术参数主要有发光二极管正向压降VF、正向电流IF、电流 传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字 信号时还需考虑上升时间、下降时间、延迟时间
和存储时间等参数。
电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流IC与 直流输入电流IF的百分比。
使用 光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列原则:所选用的光电耦合器件必须符合国内和国际的有关隔 离击穿电压的标准;由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25 、4N26、4N35)光耦合器,目前在国内应用地十分普遍。鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),可以用于单片 机的输出隔离;所选用的光耦器件必须具有较高的耦合系数。
光耦的作用及工作原理
光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路 中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱 动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入和输出 隔离的作用。
由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元 件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信
噪比。在计算机 数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。
光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离;输出信号对输 入端无影响,抗干扰能力强;由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力;另外,它还有工作稳定,无触点,使用寿命长,传 输效率高等优点。
光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离 、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。隔离能起到保护的作用,如 一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。当两个不同的型号的光耦只有负载电流不 同时,可以用大的负载电流的光耦代替小负载电流的光耦。
以六脚光耦TLP641J为例,说明其原理。
一个光控晶闸管(photo-thyristor)耦合(couple to)一个砷化镓(gallium arsenide)红外发光二极管(diode)组成。左边1和2脚是发光二极管,当外加电压后,驱动发光二极管(LED),使之发出一定波长的光,以此 来触发光控晶闸管。光控晶闸管的特点是门极区集成了一个光电二极管,触发信号源与主回路绝缘,它的关键是触发灵敏度要高。光控晶闸管控制极的触发电流由器 件中光生载流子提。光控晶闸管阳极和阴极间加正压,门极区若用一定波长的光照射,则光控晶闸管由断态转入通态。为提高光控晶闸管触发灵敏度,门极区常采用 放大门极结构或双重放大门极结构。为满足高的重加电压上升率,常采用阴极发射极短路结构。小功率光控晶闸管常应用于电隔离,为较大的晶闸管提供控制极触 发;也可用于继电器、自动控制等方面。大功率光控晶闸管主要用于高压直流输电。
当1和2脚加上5V以上电源后,就能使发光管发光,驱动光控晶闸管进入通态,此时,5和4脚构成一个电阻,阻值大约为10K。当1和2不加电压时,则4和 5可以看成一个无穷大的电阻。
常见光耦型号及使用注意事项
光电耦合器(简称光耦)是开关电源电路中常用的器件。光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
常用的4N系列光耦属于非线性光耦
常用的线性光耦是PC817A—C系列。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。
线性光耦的电流传输手特性曲线接 进直线,并且小信号时性能较好,能以线性特性进行隔离控制。
开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号 调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损 坏,一定要用线性光耦代换。
常用的4脚线性光耦有PC817A----C。PC111 TLP521等
常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。
常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。
目前市场上常见的高速光藕型号:
100K bit/S:
6N138、6N139、PS8703
1M bit/S:
6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、 CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)
10M bit/S:
6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL- 2630(双路)、HCPL-2631(双路)
光耦合器的增益被称为晶体管输出器件的电流传输比 (CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。
可控硅型光耦
还有一种光耦是可控硅型光耦。
例如:moc3063、IL420;
它们的主要指标是负载能力;
例 如:moc3063的负载能力是100mA;IL420是300mA;
光耦的部分型号
型号规格 性能说明
4N25 晶体管输出
4N25MC 4N26 4N27 4N28 4N29 4N30 4N31 4N32 4N33 4N33MC 晶体管输出
晶体管输出
晶体管输出
晶体管输出
达林顿输出
达林顿输出
达林顿输出
达林顿输出
达林顿输出
达林顿输出
4N35 达林顿输出
4N36 晶体管输出
4N37 晶体管输出
4N38 晶体管输出
4N39 可控硅输出
6N135 高速光耦晶体管输出
6N136 高速光耦晶体管输出
6N137 高速光耦晶体管输出
6N138 达林顿输出
6N139 达林顿输出
MOC3020 可控硅驱动输出
MOC3021 可控硅驱动输出
MOC3023 可控硅驱动输出
MOC3030 可控硅驱动输出
MOC3040 过零触发可控硅输出
MOC3041 过零触发可控硅输出
MOC3061 MOC3081 TLP521-1 TLP521-2 TLP521-4 TLP621 TIL113 TIL117 PC814 PC817 过零触发可控硅输出
过零触发可控硅输出
单光耦
双光耦
四光耦
四光耦
达林顿输出
TTL逻辑输出
单光耦
单光耦
H11A2 晶体管输出
H11D1 高压晶体管输出
H11G2 电阻达林顿输
因篇幅问题不能全部显示,请点此查看更多更全内容