您的当前位置:首页正文

余角和补角

2022-12-16 来源:欧得旅游网

  一、教学目标 :

  ⑴ 在具体情景中了解余角与补角,懂得的性质,通过练习掌握的概念及性质,并能运用它们解决一些简单的实际问题。

  ⑵ 经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

  ⑶ 体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

  二、教学重点、难点:

  余角与补角的性质

  三、教学过程 :

  复习、引入

  ⑴ 复习角的定义。你知道有哪些特殊的角?

  ⑵ 用量角器量一量图中每组两个角的度数,并求出它们的和。

  你有什么发现?

  新课:

  由学生的发现,给出的定义(文字叙述)。

  并且用数学符号语言进行理解。

  问题1:如何求一个角的。

  ① ∠1的余角:90°-∠1

  ② ∠α的补角:180°-∠α

  练习:填表(求一个角的余角、补角)

  拓广:观察表格,你发现α的余角和α的补角有什么关系?

  如何进行理论推导?

  结论:α的补角比α的余角大90°

  α一定是锐角

  钝角没有余角,但一定有补角。

  问题2:①如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2和∠4什么关系?为什么?

  (学生讨论,请一人回答)

  ②如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,

  那么∠2和∠4什么关系?为什么?

  结论:性质:①等角的余角相等。

  ②等角的补角相等。

  练习:看图找互余的角和互补的角,以及相等的角。

  结论:直角的补角是直角。凡是直角都相等。

  解决实际问题:

  在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°。如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。

  (学生小组讨论,应用所学知识解决此问题)

  小结:

  ⑴ 这节课,使我感受最深的是……

  ⑵ 这节课,我感到最困难的是……

  ⑶ 这节课,我学会了……

  ⑷ 这节课,我发现生活中……

  ⑸ 这节课,我想我将……

  (学生思考作答)

  作业 :目标检测P64,

  书P139-6(写书上),

  书P147-9,10(写本上)

因篇幅问题不能全部显示,请点此查看更多更全内容