您的当前位置:首页正文

数学调研报告

2023-07-07 来源:欧得旅游网

  今天到大靖镇长城小学调研,学校里的师我多半熟悉,也可以说是故地重游,只不过这故地已是多年不游了。

  上午听了李老师和徐老师的数学课,第三课我没有固定在哪个教室听课,而是在整个校园里转了一圈。

  李老师今年已经有58岁了,记得刚从初中到小学哪儿会,学校领导让他到丰小听一课再回去上一课,李老师当时还听过我不少的课。印象中,李老师特别的认真,前两天,为一道题目还特意跟我联系过。虽说年龄大了,但这种认真、踏实的工作作风一直延续着,走进校园,就看到李老师正好拎着黑板进教室,所以在点课的时候就开玩笑说,李老师准备得很充分,不听他的课,我反而有点过意不去。

  走进他的课堂,就看到孩子们准备了很多的学具,有长短不一的小棒,有各种不同形状的三角形。李老师告诉我,小棒是上课探索三角形三边关系的时候用的,这课用不上,但是学生还是带来了。不过,从这儿可以看出,李老师对每节课都是相当用功的。

  李老师这节课的教学内容是“三角形的内角和”。它先由长方形、正方形的内角和360度,两个特殊直角三角板的内角和是180度,引发学生猜想,再让学生用喜欢的方法来验证三角形的内角和是否是180度。学生通过量一量、撕一撕、折一折等途径都验证了猜想。教者在巡视中发现了一位同学用的作高的方法来推算任意三角形内角和的度数的方法,给予了表扬,并让其作了介绍。随后,设计了一组练习:(1)△这个三角形的内角和是多少度?(2)把它分成两个直角三角形,每个小直角三角形的内角和是多少度?(3)把分成的小直角三角形再分成两个小三角形,每个小三角形的内角和又是多少?(4)用一个小三角形拼成一个大三角形,拼成大三角形的内角和是多少?(5)如果是用三个小三角形拼成一个大三角形,这个大三角形的内角和又是多少呢?

  应该说,李老师的这种设计,有助于学生更好地把握其内涵。通过思辨,学生进一步理解了,不管是剪出来的还是拼起来的,只要第一范文网是三角形,它的内角和就是180度。这组题目不是教材中的,教师的用心可见一斑。

  58岁的老先生,能够坚持认真地上好每一节课,值得我学习。课能上得如此,我感到实在不容易。如果说有什么建议的话,那就是感到老师还有点不放心孩子,指导得还有点越位,显得包办偏多了点。

  第二课的徐老师是位已经三十多岁的青年同志,说其青年是因为学校里教数学的就他一人在四十岁以下,其实,徐老师已不年轻。徐老师上的是“公因数和最大公因数”这一内容的练习课,这节课从找两个数的最大公因数入手,随后分块引导学生探讨“两个数间有特殊关系时,求最大公因数的口算方法”。再通过多层次的练习加以巩固。这个班的学生数不少,有62人,在村小中可以说是独一无二的。因而,我在肯定优点的同时,更多的是提出一些建议:

  一是两个数之间有特殊关系这部分内容的教学,教学层次上不够清晰,且顺序最好作些调整。可以采用这样的步骤:(1)独立地算一算;(2)集体校对一下结果;(3)引导学生找一找规律;(4)得出相应的结论;(5)口头出题,请学生直接口算出最大公因数。

  二是小组合作学习活动的开展。小组合作学习活动的开展,不仅可以丰富课堂练习与反馈的形式,而且通过这种“兵教兵”的练说活动,有助于学生知识的达成与学生合作意识与能力的培养。当然,要想使小组合作学习活动有效,必须在小组长的设置与培训、小组合作活动的指导以及合作时机的把握等诸多方面作出相应的思考与持之以恒的训练,这样,方能使这种小组合作活动不断地走向高效。

  三是每组题要给学生留足时间,总体感觉每组题学生独立计算的时间偏少,有好多孩子来不及完成。

  四是对教材第9题的处理。老师设计了练习纸,让学生先按要求写出1至12的自然数与3、2、5这些数的最大公因数,再观察思考,这种设计是很好的。但教者对这道题理解与挖掘不够,我想,只要引导得当,学生应该有以下发现:(1)3的倍数与3的最大公因数是3,非3的倍数与3的最大公因数是1.(2)一个数与3的最大公因数最大是3,最小是1.换句话来说,一个数与3的最大公因数不可能比3大。也就是说,两个数的最大公因数不可能比小数大。

  五是教材第11题如何帮助学生真正理解题目是个难点,教者有意识地设计了一些讨论题,应该说把握还是准确的。只是设计的问题要再少点,针对性再强些?

  午饭后我同样跟数学学科的六位老师进行了交流。我先谈了自己对这种“前置学习”的理解,然后谈了数学学科要开展的一些师生竞赛活动,最后结合两节课进行了一些点评。

  再有两年,就迎来了**小学的百年校庆了。虽说学校不大,但生源还是相对稳定的,问题是数学学科老师中,有三四人近五年要退了,如果再不补充新的老师的话,数学学科的开设可能也成了问题。

因篇幅问题不能全部显示,请点此查看更多更全内容