本文讨论了活性污泥过程中泡沫的产生原因,引起生物泡沫的微生物,发泡影响因素,泡沫的危害及常用的泡沫控制方法,同时也对污泥消化过程中的厌氧泡沫作了一定的介绍. 1 活性污泥工艺中泡沫的产生
选择性浮选理论能较好地对活性污泥过程中的发泡现象进行解释[10].曝气系统的连续运行使得曝气池内气液两相得以充分的接触,在液相中产生大量的气泡.进水中带入的或者微生物自身所产生的生物表面活性剂的存在能降低液体的表面张力,使得气泡具有一定的弹性而不易破灭.另外,气泡上升过程中还会对液体中的固体颗粒进行浮选,在这过程中一些具有疏水表面的固体颗粒就会在气泡间产生架桥作用,减小各个原本分散的气泡间的距离,从而这些固体颗粒就会与气泡结合,产生更为稳定的泡沫. 活性污泥法过程中产生的泡沫可以分成如下4种形式[11]:
(1)启动泡沫.活性污泥法运行启动初期,由于污水中含有一些表面活性物质,易引起表面泡沫.泡沫呈白色且质轻,且稳定性较差.随着活性污泥的成熟,这些表面活性物质经生物降解,泡沫现象会逐渐消失.
(2)反硝化泡沫.活性污泥处理系统以低负荷串运转时,在沉淀池或曝气不足的地方会发生反硝化作用而产生氮气,氮气的释放在一定程度上减小污泥密度并带动部分污泥上浮,从而出现泡沫现象,这样产生的悬浮泡沫通常不是很稳定.
(3)表面活性剂泡沫.能生物降解的洗涤剂的大量使用,或胶体有机质以及各烃类的大量流入都易于引起处理池表面产生泡沫.如果这种进水偶尔存在,发泡过程仅在短时内造成影响;若持续存在,长时间地运行会发展成稳定的生物泡沫.
(4)生物泡沫.由于活性污泥中某些微生物的异常生长,曝气过程中气泡会通过选择性浮选与微生物机体结合生成稳定的泡沫.这种现象可用压缩为3种组分的系统来描述:微生物十气泡十絮粒=稳定的生物泡沫.生物泡沫粘度大,呈褐色,稳定性强,悬浮颗粒可达50 g/L,泡沫层相对密度大约是0.7,一般情况下很难将其吹走. 对于活性污泥法运行过程中的泡沫问题,过去主要归因于进水中表面活性物质的大量存在.但是近代大量研究表明,曝气过程产生的泡沫,主要是由于污泥中一些微生物的过度增殖而产生的生物泡沫.近年来,对活性污泥过程中泡沫问题的研究也都主要集中于生物泡沫的产生与控制等方面. 2 活性污泥法中的发泡微生物 2.1 发泡微生物的类群
生物泡沫的形成主要与活性污泥中微生物的种类和生长情况有关.很多研究表明,活性污泥中含分枝菌酸放线菌(mycolata)的生长和积聚会造成生物泡沫[12],因为含分枝菌酸放线菌的细胞壁中所含的长链枝状的分
枝菌酸构成了细胞表面疏水性(CSH),而CSH正是泡沫形成的选择性浮选的必要条件[13].另有报道认为,微丝菌(Microthrix parvicella)的存在同样也会引起生物泡沫[14].由于对微生物分类差异性认识的不足以及检测手段的限制,对于活性污泥过程中的生物泡沫究竟是由哪些微生物引起的问题至今还没有统一的报道.普遍认同的与生物泡沫有关的菌属主要有:(1)放线菌.包括:Nocardia amarne,革兰氏阳性,枝状菌丝;Nocardia pinesis,革兰氏阳性,松枝状;Rhodococcus sp.,革兰氏阳性,枝状菌丝.(2)丝状菌.包括:Microthrix parvicella,革兰氏阳性,丝状,无鞘无分枝;EikelbMm type 0675,革兰氏阳性,有鞘无分枝;Eikelboom type 0092,革兰氏阴性,无鞘无分枝.
在上述菌种中,最常见的是Nocardia amarne和Microthrix parvicella.另外,放线菌中的Nocardia asteroide,Mycobacterium sp.,Oerskovia sp.,Gordona sp.及丝状菌中的Eikelboom Type
1851,0581,0803,0041,0914和Nostocoidia limicola等微生物,虽然它们在曝气池中的浓度一般不足以产生生物泡沫,但是在稳定的泡沫中经常发现有它们的存在[15].不同地区产生生物泡沫的微生物类群和数量会有所差别.有报道表明,在比较温暖的气候条件下,Nocardia amarne是主要的发泡微生物[16].根据澳大利亚维多利亚,新南威尔士及昆士兰地区污水厂泡沫问题的调查显示,Nocardia amarne,Nocardia pinesis和Microthrix parvicella是该地区最常见的发泡微生物[1].而在欧洲的城市污水处理厂,生物泡沫问题主要是由于Microthrix parvicella和Rhodococcus sp.引起的[17]. 2.2 微生物发泡阈值浓度
活性污泥中发泡微生物的浓度必须达到一定的阈值水平以上才能引起生物泡沫[18].分子水平生物检测技术的提高为确定微生物发泡阈值浓度问题提供了技术支持.现在,相关rRNA水平的定量化技术及定量化荧光原位杂交(FISH)技术等检测手段都能用来确定活性污泥中发泡微生物的生物量[19].Cha等通过细丝交*点计数法确定过活性污泥中诺卡氏菌的发泡阈值为1ⅹ106 n/g VSS[20];Davenport等通过定量化FISH技术确定了含分枝菌酸放线菌的发泡阈值为2ⅹ106 n/mL[21];Francis等进一步对细菌形成生物泡沫与形成稳定的生物泡沫进行了区分,通过试验分别测定了发泡阈值及稳定发泡阈值.通过以SSU rRNA为目标的杂交探针检测技术,发现在批式试验中Gordonia(以前称作Nocardia)的发泡阈值和稳定发泡阈值分别为2ⅹ108 μm/mL和1ⅹ109 μm/mL[16]. 3 影响生物泡沫形成的因素 3.1 温度
与生物泡沫形成有关的菌类都有各自适宜的生长温度,当环境或水温有利于它们生长时,就可能产生泡沫现象.一般认为,温度较高时生物泡沫主要由放线菌引起,而温度较低时主要由Microthrix parvicella等丝状菌引起.Lechevalier认为,只有在温度高于14 ℃时,放线菌才会引起生物泡沫,同时他还特别提到,Nocardia amarne
的生长温度范围为23~37 ℃.Knoop等的研究表明,Microthrix parvicella更适宜在≤12~15 ℃的较低温度下生长,超过20 ℃就不会发生增殖[22]. 3.2 pH[11, 23]
有研究表明,Nocardia和Rhodococcus菌种的最佳pH为7.0~8.5,当pH从7.0下降到5.0~5.6时,能有效地减少泡沫的形成.另外,Nocardia amarne的生长对pH极为敏感,最适宜的pH为7.8,当pH为5.0时,能有效控制其生长;Microthrix parvicella最适宜pH为7.7~8.0. 3.3 溶解氧
Nocardia是好氧菌,在缺氧或厌氧条件下不易生长,但也不死亡.Microthrix parvicella却能忍受缺氧状态[15].也有报道认为,较低的曝气池溶解氧浓度是丝状微生物开始增殖的有利因素[17]. 3.4 污泥停留时间
由于产生泡沫的微生物普遍存在生长速率较低,生长周期长(见表1)的特点,所以污泥停留时间长有利于微生物的生长.因此,采用延时曝气方式的活性污泥法更易产生泡沫现象.另外,一旦泡沫形成,泡沫层的生物停留时间就会独立于曝气池内的污泥停留时间,易形成稳定持久的泡沫. 表1 常见发泡微生物的生长周期[11] 菌 类 生长周期/d Rhodococcus sp. 2~4
Nocardia amarne 4~7
Microthrix parvicella 6~10
Nocardia pinesis 10~21 3.5 污泥负荷
研究表明,在较高的F/M下,Nocardia在放线菌中所占的数量会上升约6%,几乎在放线菌中占绝对优势,并且泡沫也迅速出现.其他放线菌如果其微环境中底物浓度很高(如为液相中的100倍以上)也会大量增殖并产生泡沫.而Microthrix parvicella却比较适合在较低的污泥负荷下生长,有报道表明其最佳污泥负荷≤0.1 kg/(kg d)[22].
3.6 底物种类
底物的种类与泡沫的产生有很大关系.由于大多数发泡微生物具有疏水性,因此疏水性底物更易被这些微生物利用而引发泡沫问题[23].大量研究表明,进水中存在高水平可乳化的脂肪类物质如油或者油脂时极易引起泡沫问题[24].脂肪酸被认为是Nocardia amarne的唯一碳源,因此当进水中有脂肪酸存在时,发泡机率就会大大增加[25],而Rhodococcus sp.更适宜以C12-C17的烷烃作为底物[26].以橄榄油或者吐温80等疏水性物质作为底物时,Nocardia pinesis生长更快[27].跟放线菌不同,Microthrix parvicella具有很高的营养需求,喜欢长链脂肪酸如油酸作为其碳源,因此在含有高负荷脂,油和皂类的情况下,有优先繁殖Microthrix parvicella的危险[28]. 3.7 曝气方式
不同曝气方式所产生的气泡不同,而微气泡或小气泡比大气泡更有利于产生生物泡沫,并且泡沫层易集中于曝气强度低的区域[11]. 3.8 其他运行条件
曝气池中离心循环泵产生的机械应力会损坏密实的活性污泥絮状体,从破损的细胞中释放出来的表面活性蛋白质,类脂化合韧的增多,能导致放线菌,丝状菌的增殖,产生大量泡沫[29]. 4 厌氧泡沫
大量研究表明,泡沫问题不仅发生在曝气池和二沉池中,污泥消化池运行过程中也经常会遇到泡沫问题.一般认为,污泥消化池中的泡沫问题主要是由如下3点原因造成的:(1)由于产甲烷阶段是厌氧消化的速度限制步骤,当消化过程超负荷运转时就会因过程失去平衡而造成挥发性脂肪酸(VFA)特别是乙酸的积累;(2)污泥中疏水物质的存在;(3)污泥中含有发泡微生物[30].Krishna等认为,污泥中诺卡氏菌的存在,消化池的鼓气混合,过度的气体再流通,高污泥负荷,不当的污泥负荷控制以及污泥中有机物含量过高都会引起消化过程中的泡沫问题[31];Wanner认为,厌氧消化过程中的生物泡沫同样是由于具有疏水性细胞壁的Nocardia以及Microthrix parvicella等微生物与过程中产生的气泡结合上升至表面积累积而产生的[32]. 5 泡沫的危害
活性污泥过程中出现的泡沫会产生如下问题[17]:(1)刮风时泡沫飞扬会给人不良的美观感受;(2)污染池壁和过道,会引起一系列安全问题;(3)妨碍刮渣系统的正常运行;(4)在寒冷的冬天会因结冰而影响机械装置的正常运行;(5)影响曝气系统(特别是机械曝气)的充氧效率;(6)增加出水的BOD和SS,影响出水水质;(7)气味问题.
另外,在厌氧消化池中产生的泡沫也会导致一系列的运行问题,降低消化池的效率并降低气体产量. 6 活性污泥过程中泡沫问题的控制
近年来,活性污泥过程中泡沫问题的控制技术得到了较大的发展,但是这些技术大都有较强的针对性,在使用时应根据现场的实际情况加以选择. 6.1 降低污泥停留时间
大量研究表明,降低曝气池的污泥停留时间,能有效控制活性污泥过程中的生物泡沫.降低污泥停留时间,实质上是种生物筛选策略,即利用发泡微生物平均世代时间较长的特点,抑制发泡微生物在曝气池中的过度增殖或将其排除出去,达到控制生物泡沫的目的.有文献报道,只要将泥龄控制在9 d以下,就能将曝气池中的Nocardia消除[33].但降低泥龄也有许多不适用的方面:当曝气池中需要有硝化作用发生时,则需要相对较长的污泥停留时间,与采用此法是个矛盾;另外,Microthrix parvicella和其他一些丝状菌的生长受泥龄变化的影响相对较小,如果生物泡沫主要由这些微生物引起,采用此法效果不大[17]. 6.2 降低曝气池空气输入率
降低曝气池的空气输入率,能在一定程度上控制生物泡沫的发展.一方面,降低空气输入率相应减少了曝气池中微气泡生成量,有效降低曝气池中选择性浮选强度,而选择性浮选恰是活性污泥过程中泡沫产生的重要原因;另外,降低空气输入率能降低曝气池中的溶解氧浓度,抑制Nocardia等菌属的过度增殖[34].但是,随着空气输入率的降低,曝气池中的硝化作用会受到抑制,出水浊度也会相应有所提高,这是采用此法控制泡沫问题时需要考虑的地方[33]. 6.3 曝气池前增设生物选择器
生物选择器是个混合池,使进入曝气池的污水先与回流活性污泥充分混合,在好氧,厌氧或缺氧的条件下停留一段时间,抑制发泡微生物的过度增殖,选择性发展其他微生物[34].在厌氧或缺氧生物选择器中,建立高F/M,低DO或厌氧的条件,使兼性的絮凝体形成菌吸附并贮存水中大部分可溶有机物,通过夺去一部分发泡微生物赖以生存的营养源的方式对发泡微生物进行控制.好氧生物选择器也以控制某些发泡微生物的生长为最终目的,所不同的是,它所创造的是个好氧的环境.Paolo等在研究中用污泥负荷为11 kgBOD5/(kgMLSS d),平均接触时间为18 min的缺氧生物选择器有效控制了回流污泥中的Nocardia,但该选择器对Microthrix parvicella则无明显效果;当采用污泥负荷为24 kgBOD5/(kgMLSS d),平均接触时间为14 min的好氧生物选择器时则能对Microthrix parvicella有较好的控制作用[35]. 6.4 选择性泡沫浮选或淘汰(SFW)
通过对发泡污泥进行连续选择性浮选,处理并淘汰泡沫后,生物相中的发泡微生物会大大减少.Pretorius等通过研究发现,对发泡污泥选择性浮选4 h后,其中95%的发泡微生物得到了去除[10]. 6.5 回流厌氧消化池上清液
由于消化池上清液对Nocardia amarne有毒性,因此可以通过向曝气池引入消化池上清液来控制生物泡沫.需
要注意的是,由于上清液COD和NH3-N浓度极高,因此把上清液引入曝气池后可能会恶化最终出水水质[17].
6.6 其他控制方法
除了上述方法之外,向泡沫喷水,加强上部搅拌,添加化学药剂(如H2O2,O3和聚合铝盐等),投加特别微生物(如肾形虫),对回流污泥进行氯化以杀伤放线菌及降低污水pH等方法都能对泡沫起一定的控制作用,在运用时可根据实际情况加以选择. 6.7 厌氧泡沫的控制
对于污泥厌氧消化池中的泡沫问题,可以采用如下方法进行控制:降低污泥龄,在消化池顶部安装搅拌器,投加消泡剂(如聚合铝盐)及对污泥进行加热与处理(70 ℃,5 min). 7 问题与展望
对于活性污泥过程中的泡沫问题,目前已经展开了大量的研究并且也取得了一定的成果.但是活性污泥法中产生泡沫的机理及其影响因素都较为复杂,并且还经常会与污泥膨胀等其他异常情况同时出现,在对其控制上还缺乏广泛有效的手段,很多方面还有待于进一步的研究.
(1)明确活性污泥过程中的泡沫产生机理.选择性浮选可以较好地解释活性污泥过程中泡沫的产生,因此可以对其进一步展开研究,对选择性浮选过程中的微气泡大小,絮体颗粒大小以及CIH等因素进行量化考察,明确这些指标在发泡过程中所起的作用.
(2)采用现代先进的生物检测技术确定不同情况下发泡微生物的种类,较准确地判断发泡原因,以便能使用具有针对性的措施控制泡沫的产生.
(3)运用数学模型把发泡微生物种类,浓度及各种发泡影响因素与发泡情况有机地联系起来,争取运用数学模型来有效预测,判断活性污泥过程中的发泡状况.
(4)开发使用范围广,不利因素小和经济可行的组合泡沫控制技术来有效控制活性污泥过程中的泡沫问题. 参 考 文 献
[1]Linda L B,Anne E H,Greenfield P F,et al.Foaming in activated sludge plants: a survey in Queensland Australia and an evaluation of some control strategies.Wat.Res., 1991, 25(3):313~317
[2]Paul P,David J.Causes and control of Nocardia in activated sludge.J.WPCF, 1990, 62(2):143~150 [3] Pujol R,Duchene P,Schetrite S,et al.Biological foams in activated sludge plants: characterization and situation.Wat.Res., 1991, 25(4):1 399~1 404
[4]王凯军.活性污泥膨胀的机理与控制.北京:中国环境科学出版社,1992
[5]Anon.Milwaukee mystery: unusual problem develops.Wat.Swge.Wks.,1969,116:213
[6]Soddel J A,Seviour RJ.Microbiology of foaming in activated sludge plants.J.Appl.Bact., 1990, 69:145~176 [7]Goddard A J,Forster C F.Stable foams in activated sludge plants.Enz.Microb.Technol.,1987,9:164~168 [8]David J.Towards a comprehensive model of activated sludge bulking and foaming.Wat.Sci.Tech., 1992, 25(6):215~230
[9] Chacin E,Kocianova E,Forster C F.Foam formation, anaerobiosis and Microthrix Parvicella.J.JWEM, 1994, 8:534~537
[10] Pretorius W A,Laubscher C J P. Control of biological scum in activeated sludge plants by means of selective flotation. Wat.Sci.Tech., 1987, 19(2):1 003~1 011
[11]李探徽,彭永臻,陈志根,等.活性污泥法的生物泡沫形成和控制.中国给水排水,2000,17(4):73~76 [12]Chun J,Kang S O,Hah Y,et al.Phylogeny of mycolic acid-containing actionmycetes.J.Ind.Microbiol., 1996, 17:205~213
[13] Stratton H M,Brooks P R,Griffiths P C,et al.Cell surface hydrophobicity and mycolic acid composition of Rhodococcus strains isolated from activeated sludge foam.Journal of Industrial microbiology & biotechnology, 2002, (8):264~267
[14]Asa D W, Eva H, Maria R.Bulking and foaming caused by microthrex parvicella at three large sewage treatment plants in the greater Stockholm area.Wat.Sci.Tech., 1996, 34(5~6):281~287
[15]Soddell J A.Microbiology of foaming in activated sludge plants.J.App. Bacteriol.,1990,69:145~176 [16] Francis L R,Lutgarde R.Role of filamentous microorganisms in activated sludge foaming:relationship of mycolata levels to foaming initiation and stability.Wat.Res., 2002, 36:445~459
[17] Tipping P J,MIBiol C.Foaming in activated-sludge processes: an operator,s over view.J.CIWEM, 1995, 9:281~289
[18]Blackbeard J,Ekama G,Marais G.A survey of filamentous bulking and foaming in activated-sludge plants in South Africa.Wat.Pollut.Control,1986,85(1):90~100
[19]Reyes F L,Oerther D B,Reyes M F, et al.Characterization of filamentous foaming in activated sludge systems using oligonucleotide hybridization probes and antibody probes.Wat. Sci.Technol., 1998, 37(4~5):485~493 [20]Cha D K, Jenkins D, Lewis W P, et al.Process control factors influencing Nocardia populations in activated sludge.Water Environ.Res., 1992, 64:37~43
[21]Davenport R J, Curtis T P, Goodfellow M, et al.Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge
plants.Appl.Environ.Microbiol., 2000, 66:1 158~1 166
[22] Knoop S,Kunst S.Influence of temperature and sludge loading on activeated sludge settling,especially on microthrex parvicella.Wat.Sci.Tech.,1998, 37(4~5):27~35
[23]丁 峰,彭永臻,董文艺,等.活性污泥法中泡沫问题的产生与控制技术.给水排水,2000,26(2):13~17 [24]Lemmer H.The ecology of scum causing actinomycetes in sewage treatment plants. Wat.Res., 1986, 20 (5):531~535
[25]Franz A,Matsche N.Investigation of a Bacteria-Enzyme additive to prevent foaming in activated sludge plants.Wat.Sci.Tech., 1994, 29(7):281~284
[26]Sorkhoh N A,Al-Hasan R H,Khanafer M,et al.Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil.J.Appl.Bacteriol., 1995, 78:194~199
[27]Jacques S,Robert S.Growth of an activated sludge foam-forming bacterium, Nocardia pinensis,on hydrophobic substrates.Wat.Sci.Tech.,1996,34(5~6),113~118
[28] Mamais D,Andreadakis A.Causes of,and control strategies for Microthrix parvicella bulking and foaming in nutriaent removal activated sludge systems.Wat.Sci.Tech.,1998,37 (4~5): 9~17
[29]Jurg Kappeler, Willi Gujer.Influence of wastewater composition and operation conditions on activated sludge bulking and scum formation.Wat.Sci.Tech., 1994,30(11):181~189
[30] Asa D W,Eva H,Maria R.Foaming in anaerobic digesters caused by Microthrix parvicella.Wat.Sci.Tech., 1998, 37(4~5):51~55
[31]Krishna R P,Kent C C,Wendell H K.Causes and effects of foaming in anaerobic sludge digesters.Wat.Sci.Tech., 1997, 36(6~7):463~470
[32]Wanner J.Activated sludge bulking and foaming control.Lancaster:Technomic Publicshing Company, 1994 [33]Tyler R,Phil N,Carl J.Solution of Nocardia foaming problems.Re.J.WPCF, 1990, 62(7):915~919 [34]张勇吉.曝气池中生物泡沫的产生和控制.中国给水排水,1991,7(2):60~63
[35]Paolo M,Donatella D.Testing the control of filamentous microrgenisms responsible for foaming in a full-scale activated-sludge plant running with initial aerobic or anoxic contact zones.Bioresource Technology, 1997, 60:43~49
作者简介:张峰,男,1981年生,工学硕士,毕业于华东理工大学环境工程系,现为上海化工设计院有限公司环保安全中心工程师
因篇幅问题不能全部显示,请点此查看更多更全内容