您的当前位置:首页正文

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A MATHEMATICAL AND GENERAL J. Phys. A Ma

2020-08-18 来源:欧得旅游网
INSTITUTEOFPHYSICSPUBLISHING

J.Phys.A:Math.Gen.39(2006)13783–13806

JOURNALOFPHYSICSA:MATHEMATICALANDGENERAL

doi:10.1088/0305-4470/39/44/012

Completenessofnon-normalizablemodes

PhilipDMannheimandIonelSimbotin

DepartmentofPhysics,UniversityofConnecticut,Storrs,CT06269,USAE-mail:philip.mannheim@uconn.eduandsimbotin@phys.uconn.edu

Received13July2006Published17October2006

Onlineatstacks.iop.org/JPhysA/39/13783

Abstract

Weestablishthecompletenessofsomecharacteristicsetsofnon-normalizablemodesbyconstructingfullylocalizedsquarestepsoutofthem,witheachsuchconstructionexpresslydisplayingtheGibbsphenomenonassociatedwithtryingtouseacompletebasisofmodestofitfunctionswithdiscontinuousedges.Aswellasbeingofinterestinandofitself,ourstudyisalsoofinteresttotherecentlyintroducedlargeextradimensionbrane-localizedgravityprogramofRandallandSundrum,sincetheparticularnon-normalizablemodebasesthatweconsider(specificallytheirregularBesselfunctionsandtheassociatedLegendrefunctionsofthesecondkind)areassociatedwiththetensorgravitationalfluctuationswhichoccurinthosespecificbraneworldsinwhichtheembeddingofamaximallyfour-symmetricbraneinafive-dimensionalanti-deSitterbulkleadstoawarpfactorwhichisdivergent.Sincethebrane-worldmasslessfour-dimensionalgravitonhasadivergentwavefunctionintheseparticularcases,itsresultinglackofnormalizabilityisthusnotseentobeanyimpedimenttoitsbelongingtoacompletebasisofmodes,andconsequentlyitslackofnormalizabilityshouldnotbeseenasacriterionfornotincludingitinthespectrumofobservablemodes.Moreover,becausethedivergentmodesweconsiderformcompletebases,wecanevenconstructpropagatorsoutoftheminwhichthesemodesappearaspoleswithresidueswhichareexpresslyfinite.Thus,eventhoughnormalizablemodesappearinpropagatorswithresidueswhicharegivenastheirfinitenormalizationconstants,non-normalizablemodescanjustasequallyappearinpropagatorswithfiniteresiduestoo—itisjustthatsuchresidueswillnotbeassociatedwithbilinearintegralsofthemodes.PACSnumbers:02.30.Gp,03.65.Ge,04.50.Th,11.25.−w

1.Introduction

Inconstructingcompletebasesofmodesolutionstowaveequationsitisveryconvenienttoworkwithmodeswhicharenormalizablesincetheyobeyaclosurerelation.Specifically,if

0305-4470/06/4413783+24$30.00©2006IOPPublishingLtdPrintedintheUK

13783

13784PDMannheimandISimbotin

onehassomecompleteorthonormalbasisofmodesfm(w)witheigenvalueslabelledbymandorthonormalityrelation

󰀆∞

dwe−2A(w)fm(w)fm󰀂(w)=δm,m󰀂,(1)

−∞

wheree−2A(w)isanappropriatenormalizationmeasure,thecompletenessofthebasiswill

thenrequirethatanylocalizedfunctionbeexpandableintermsofthebasismodesas

󰀅

ψ(w)=amfm(w)(2)

m

withcoefficientswhicharegivenas

󰀆∞

am=dwe−2A(w)ψ(w)fm(w).

−∞

(3)

Withinsertionofthesecoefficientsbackintoequation(2)yielding

󰀆∞

ψ(w)=dw󰀂δ(w−w󰀂)ψ(w󰀂)

−∞

󰀅󰀆∞󰀂

dw󰀂e−2A(w)ψ(w󰀂)fm(w󰀂)fm(w),=

m

−∞

(4)

thearbitrarinessofthechoiceofψ(w)willthenrequirethatthebasismodesobeyaclosure

relationoftheform

󰀅

fm(w󰀂)fm(w)=e2A(w)δ(w−w󰀂).(5)

m

Withequation(5)beingrecognizedasbeingaspecialcaseofequation(2)(namelythe

expansionoftheextremelylocalizedδ(w)inacompletebasisoffm(w)withcoefficientsam=fm(0)),thenotionsofcompletenessandclosureareoftentreatedinterchangeablyintheliterature,withequation(5)notonlyoftenbeingreferredtoasbeingacompletenessrelation,butwithitevenbeingregardedasbeinganessentialrequirementforabasistobecompleteinthefirstplace.

Itisthepurposeofthispapertoshowthatthisneednotinfactbethecaseandthatmodescanbecompleteevenwhentheydonotobeyequation(5)atall.Indeed,thestepswhichleadfromequation(1)toequation(5)onlyholdwhenthebasisisoneforwhichtheintegralsontheleft-handsideofequation(1)doinfactexist.Withbothequations(1)and(5)involvingbilinearfunctionsofthebasismodes,butwithequation(2)onlybeingalinearfunctionofthemodes,itisstillpossibleforthesummationinequation(2)tobewelldefinedevenwhenthebilinearexpressionswhichappearinequations(1)and(5)arenot.Moreover,thewaveequationsforwhichfm(w)arethemodesolutionsarethemselvesonlylinearfunctionsoffm(w),anditshouldthusbeimmaterialtothecompletenessoftheirsolutionsastowhetherornotbilinearintegralsofthemodesexist.Ingeneral,thencompletenessofabasishastobeunderstoodasbeingtherequirementthatforlocalizedfunctionsψ(w)thereexistsanexpansionoftheformofequation(2)withfinitecoefficientsamregardlessofwhetherornottheintegralsontheleft-handsideofequation(1)actuallyexist.Non-normalizablemodeswhosebehaviourissobadastocausethesebilinearintegralstodivergecanstillbecompleteinthesenseofequation(2),withtheamcoefficientsbeingsuchastoleadtototaldestructiveinterferencebetweenfm(w)intheregionswherefm(w)diverge.Itisthusequation(2)whichhastoberecognizedasbeingthegeneralstatementofcompleteness,andinthispaperweshallconfirmthisbyexplicitlyconstructinglocalizedsquarestepsassumsoversomecharacteristicbasesofdivergentmodes.Whiletheexistenceornotofthenormalizationintegralsof

Completenessofnon-normalizablemodes13785

equation(1)isimmaterialtoadifferentialwaveequation,ifthesolutionstothewaveequationarerequiredtobelongtoaHilbertspaceonecanrestricttosquareintegrablefunctionsalone,thoughotherwisethereisnoreasontodiscardanynon-normalizablesolutions1.SincewaveequationsinclassicalphysicsdonotactinaHilbertspace,inclassicalphysicsoneisnotfreetodiscardnon-normalizablemodes,andsinceclassicalphysicswaveequationsplayaprominentroleinclassicalgravitywheretheyareassociatedwithclassicalgravitationalfluctuationsaroundclassicalgravitybackgrounds,itistoclassicalgravitythatweshalllookforexamplesinwhichtotestwhethernon-normalizablemodescanbecomplete.2.Waveequationsforgravitationalfluctuations

Thewaveequationsweshallexplicitlyexploreareassociatedwiththerecentlyintroducedbrane-localizedgravityprogramofRandallandSundrum[2,3].Asintroduced,thebranegravityprogramprovidesforthepossibilitythatourfour-dimensionaluniversecouldbeembeddedinsomeinfinitelysizedbulkspaceandyetnotconflictwiththefactthatthereisnoapparentsignofanysuchhigherdimensionalbulk.Specifically,bytakingthehigherdimensionalbulktopossessaveryspecialgeometry,namelythefive-dimensionalanti-deSittergeometryAdS5,andbytakingourfour-dimensionaluniversetobeabrane(i.e.membrane)embeddedinit,RandallandSundrumfoundthatundercertaincircumstancesitwasthenpossibleforgravitationalsignalstolocalizearoundthebraneandnotpenetrateveryfarintothebulk,withAdS5actingasasortofrefractivemediumwhichrapidlyattenuatesanysignalswhichtrytopropagateinit.WithintheRandall–Sundrumbraneworldtherearesixfullysolubleset-ups(technicallyAdS5bulkswithembeddedMinkowski,deSitteroranti-deSitter

±

,dS±braneseachwitheitherpositiveornegativetensionλ—tobereferredtoastheM44and±

AdS4braneworldsinthefollowing),withallsixofthemhavingbackgroundswhichcanbedescribedbythegenericfive-dimensionalmetric

ds2=dw2+e2A(|w|)qµν(xλ)dxµdxν

(6)

wherethew-independentqµνisthefour-dimensionalmetricandtheso-calledwarpfactore2A(|w|)istakentobeafunctionof|w|wherewisthefifthcoordinate.WiththecurvatureofAdS5beingtakentobegivenas−b2,inthevariouscasestheexplicitbackgroundmetricsaregivenas󰀇±󰀈

=dw2+e−2󰀱(λ)b|w|[dx2+dy2+dz2−dt2],ds2M4(7)󰀐󰀎󰀏󰀑2󰀇󰀈bH2

ds2dS±−󰀱(λ)b|w|[e2Ht(dx2+dy2+dz2)−dt2],sinh2arcsinh4=dw+2bH

(8)

and

󰀐󰀎󰀏󰀑

󰀇󰀈bH2±222

−󰀱(λ)b|w|[dx2+e2Hx(dy2+dz2−dt2)],dsAdS4=dw+2cosharccosh

bH

(9)

EveninquantummechanicswenotethattheSchr¨odingerequationH|ψ󰀈=E|ψ󰀈isanoperatorequationwhichactslinearlyontheketvector|ψ󰀈,withitsexistencebeingindependentofwhatparticulardualvectorbra󰀇ψ|mightbeusedtoconstructthebilinearnorm󰀇ψ|ψ󰀈.Thereisthusfreedomavailableinchoosingthedualspacevectors,withchoicesforthemotherthansimplyastheconjugatesoftheketshavingbeenfoundtoleadtoasensibleprobabilityinterpretationinthecaseoftheorieswithanon-Hermitianpotential(thefirstpartof[1])oranindefinitemetric(thefourth-orderoscillatortheorydiscussedinthesecondpartof[1]).Eveninquantummechanicsthen,imposingthefinitenessofthe󰀇ψ|ψ󰀈normisnotthemostgeneralrequirementthatonecanconsider.

1

13786PDMannheimandISimbotin

±

where󰀱(λ)isthesignofλ.(TheM4backgroundmetricsaregivenin[2,3],thedS±4

±

backgroundmetricsaregivenin[4,5]andtheAdS4backgroundmetricsaregivenin[4].)

Forthebraneworldthegravitationalfluctuationsaroundthesesixbackgroundsaremostreadilytreatedintheaxialgaugewherethetransverse-tracelesstensorfluctuationmodeshTTµνthenallobeythegenericwaveequation(see,e.g.,[6]wherefullderivationsandrelevantcitationsaregiven)

󰀁󰀂󰀏󰀎∂2dA2

˜α∇˜αhTT−4+e−2A∇(10)µν=0,2∂|w|d|w|

assubjecttotheconstraint(technicallytheIsraeljunctioncondition)

󰀐󰀑∂dA

δ(w)−2hTT=0

∂|w|d|w|µν

(11)

˜αindicatethat˜α∇atabranewhichislocatedatw=0.Inequation(10),thetildesin∇

theseparticularcovariantderivativesaretobeevaluatedinthegeometryassociatedwiththefour-dimensionalqµν.Andwiththefour-dimensionalsectorofthetheorybeingseparableaccordingto

2TT˜α−2kH2]hTT˜α∇(12)[∇µν=mhµν,asdefinedheresothattensorfluctuationswithm2=0propagateontheappropriatedS4,M4

orAdS4lightcones(k=1,0,−1,respectively),aseparationofthemodesintotheform

λ

hTTµν=fm(|w|)eµν(x,m)thenrequiresthatfm(|w|)obey

󰀁󰀂󰀏2󰀎󰀎2󰀏2

ddAdA

+e−2Am2fm(|w|)=0−4−2(13)22d|w|d|w|d|w|(ineachofthesixbackgroundcasesofinteresttoustheidentityd2A/d|w|2=−kH2e−2A

holds),assubjecttotheconstraint

󰀑󰀐

dAd

−2fm(|w|)=0.(14)δ(w)

d|w|d|w|

Ourtaskisthustoexplorethecompletenessofsolutionstoequations(13)and(14),andareaderunfamiliarwiththephysicsofthebraneworldcanstartatthispointasnoneoftheanalysiswhichensueswilldependonhowequations(13)and(14)werefirstarrivedat.Whatwillmatterinthefollowingisonlythattheseequationsadmitofexactsolutions,solutionswhoselarge|w|behaviourcanthenexplicitlybemonitored.

Beforeactuallyidentifyingexplicitsolutionstoequations(13)and(14)forthespecificchoicesofAand󰀱(λ)ofinterest,wenotethatviamanipulationofequation(13)wefindthateverypairofitssolutionshavetoobey

󰀎󰀎󰀑󰀐󰀏󰀏

󰀇2󰀈dddAdAd−2A2

fm1−2fm2−fm2−2fm1,m1−m2fm1fm2=e

d|w|d|w|d|w|d|w|d|w|

(15)whichwithequation(14)thenrequiresthemodestoobey

󰀆∞󰀈󰀇2

d|w|e−2Afm1fm2m1−m22

0

󰀐󰀎󰀎󰀑󰀏󰀏

dddAdA

−2−2=limfm1(16)fm2−fm2fm1.

|w|→∞d|w|d|w|d|w|d|w|

Orthogonalityofmodeswithdifferentseparationconstantsisthusachievedwhenthemodesarewell-enoughbehavedat|w|=∞tocausetheright-handsideofequation(16)tovanish

Completenessofnon-normalizablemodes13787

(withtheorthogonalitymeasurethenbeingpreciselytheoneweintroducedinequation(1)),withmodeswhichdivergebadlyenoughatinfinitycausingtheintegralontheleft-handsidetonotexist.Whileonecouldnowproceedtodeterminethemodesolutionsandidentifyforwhichparticularonestheintegralontheleft-handsideofequation(16)convergesordiverges,beforedoingsoitisinstructivetorecallthatviaasequenceoftransformationsitispossibletobringequation(13)toamorefamiliarform.Specifically,ifwechangevariablesfromwtoz

ˆm,fˆmwillthenobey[3]bysettingdz=e−A(w)dwanddefinefm=eA(z)/2f

󰀁󰀂󰀎󰀏

d29dA23d2Aˆm=0,−2++−m2f(17)2dz4dz2dzwhileatthesametimethenormalizationintegralwillchangeas󰀆∞󰀆z[∞]

ˆm1(z)fˆm2(z).d|w|e−2Afm1(|w|)fm2(|w|)→dzf

0

z[0]

(18)

Whilewethusrecognizeequation(17)asbeinginthefamiliarformofaone-dimensional

Schr¨odingerequationandequation(18)asbeingintheformofitsconventionalquantum-mechanicalnormalizationintegral,nonetheless,asnotedabove,sinceinthecaseswhichare

ˆmmodestobelongtoaHilbertspace,weshouldofinteresttousherewearenotrequiringthef

notdiscardthenon-normalizablesolutionstoequation(17).2Andhavingnowrecognizedtherationalefornotdiscardingnon-normalizablesolutions,wereturntoequations(13)and(14)toactuallyfindandthenexplorethem.

3.CompletenesstestsfortheMinkowskibranecases3.1.Positivetensioncase

+

FortheM4casewhereA=−b|w|,thesolutionstoequation(13)arereadilyobtainedbysettingy=meb|w|/basthistransformationbringsequation(13)totheBesselequationform

󰀑󰀐2

4d1d

+1−2fm(y)=0.+(19)

dy2ydyy

Modesolutionswithanypositivem2arethusgivenby

fm(y)=αmJ2(y)+βmY2(y)

(20)

whereαmandβmarey-independentcoefficients,withthosesolutionswithm2=0being

givendirectlyfromequation(13)as

f0(y)=α0e−2b|w|+β0e2b|w|.

(21)

Tosatisfythejunctionconditionofequation(14)thenrequiresthatthevariousmodecoefficientsobey

αmJ1(m/b)+βmY1(m/b)=0,

β0=0,

(22)

withthecontinuumofm2>0modesthussatisfyingthejunctionconditionviaaninterplayofthetwotypesofBesselfunction,andthem2=0modef0(y)=α0e−2b|w|satisfyingitallon

Eveninquantummechanicsonedoesnotdiscardplanewavemodeseventhoughtheycausetheintegralontheright-handsideofequation(18)todiverge,sincedivergentastheymaybe,onecanstillconstructlocalizedwavepacketsoutofthem.Inthisrespectthen,thepointofthispaperwillbetoconstructlocalizedconfigurationsoutofbasisvectorswhichdivergeevenmorerapidlythanplanewaves.Andwhileweshallrestrictthestudyofthispapertotheclassical-mechanicalcontext,wenotethatwithinaquantum-mechanicalcontextsuchlocalizedconfigurationscouldstillbelongtoaHilbertspaceevenifthebasisvectorsthemselvesoutofwhichtheyarebuiltdonot.

2

13788PDMannheimandISimbotin

itsown.Inthebraneworldthem2>0modesareknownastheKK(Kaluza–Klein)modes,whilethem2=0modeservesasamasslessgraviton.Atlargey,thesesolutionsbehaveas

󰀎󰀏1/2

2α0m2

fm→f0→22.(23)[αmcos(y−5π/4)+βmsin(y−5π/4)],

πybyWithallofthesemodeshavingwavefunctionswhichfallveryfastin|w|aswegoawayfrom

thebrane,thegravitationalfluctuationmodesarethuslocalizedaroundit,thisbeingthekeyresultof[3].Withthemeasureofthenormalizationintegralbeingrewriteableas

󰀆∞󰀆∞

2b|w|

d|w|e=bdxx(24)

0

1/b

onsettingx=eb|w|/b,weseethatthemasslessgravitonwavefunctionisboundstate

normalizableandthattheKKmodespossessthesamecontinuumnormalizationasflatspaceBesselfunctions.Consequently,thetotalityofmasslessgravitonplusKKcontinuummodesiscompleteinexactlythesamewayasplanewaves,withbothofequations(1)and(5)beingsatisfied(thesummationinequation(5)isunderstoodtocontainbothdiscreteandcontinuousindices).Whilewethusseethatthereisnoneedtoperformanyexplicitcompletenesstestfor

+

aseverythingisstandard,aquitedifferentsituationwillemergewhenwethemodesofM4

considerM4.

3.2.Negativetensioncase

FortheM4casewhereA=+b|w|,them2>0andthem2=0solutionstoequation(13)aregivenby

fm(y)=αmJ2(y)+βmY2(y),

and

f0(y)=α0e−2b|w|+β0e2b|w|,

(25)(26)

wherenowy=me−b|w|/b,whiletosatisfythejunctionconditionofequation(14)thistimerequires

αmJ1(m/b)+βmY1(m/b)=0,

α0=0.

(27)

+

UnliketheM4casethistimeygoestozeroas|w|goestoinfinity,withlarge|w|asymptoticsnowbeingcontrolledbythebehaviourofBesselfunctionsatsmallargumentratherthanlarge,withthesolutionsbehavingatsmallyas

4βmαmy2−,fm→8πy2β0m2

f0→22

by

(28)

(Y2(y)behaveirregularlyatsmallargument).Withthemeasureofthenormalizationintegralnowbeinggivenas

󰀆1/b󰀆∞

−2b|w|

d|w|e=bdxx(29)

0

0

onsettingsetx=e−b|w|/b,thistimeweseethatitisonlytheJ2(y)modeswhichare

normalizable,andthatthemasslessgravitonwavefunctionandalltheY2(y)modesarenotonlynon-normalizable,theydivergefartooviolentlytoevenbeplanewavenormalizable.Inordertobeabletosatisfythejunctionconditionofequation(27)withnormalizablemodesalone,theconvergentJ2(y)modeswouldhavetosatisfyequation(27)allbythemselves,withthemodesthenneedingtoobeyJ1(m/b)=0.Solutionstothisconditionexistandaregiven

Completenessofnon-normalizablemodes13789

asthezeros,ji,oftheBesselfunctionJ1.Thissetofzerosisdiscreteandinfinite,withthe

braneworldthenbeinggivenasmodeswithmassesmi=bji.normalizablemodesoftheM4

Similarly,thedivergentY2(y)modescansatisfythejunctionconditionallontheirowniftheirmassesobeymi=byi,whereyiarethezerosoftheBesselfunctionY1,toyieldanotherinfinitesetofdiscretemodes.Withthedivergentmasslessgravitonmodewithwavefunctionβ0e2b|w|alsosatisfyingthejunctionconditiononitsown,wethusrecognizetwoclassesof

braneworld,theconvergentJ2(jie−b|w|),andthedivergente2b|w|andbasismodesintheM4

Y2(yie−b|w|).Andwhileourobjectiveistoapplyacompletenesstesttothedivergentmode

modebasis,itwillbeinstructivetoactuallyapplyacompletenesstesttotheconvergentM4

basisfirst.

modes4.CompletenesstestforconvergentM4

Totestforcompletenessofabasis,weneedtodeterminewhetheritispossibletoexpandtheˆ,α󰀁e−b|w|/b󰀁β,VJ=0otherwiseintermsofthetypicallocalizedsquarestepVJ=V

modesofthebasis,namelyweseektofindasetofVmfromwhichwecanreconstructthesquarestepaccordingto

󰀅

VJ(|w|)=VmJ2(me−b|w|/b).(30)󰀄∞

TodeterminetheneededcoefficientsVm,weapply0d|w|e−2b|w|J2(me−b|w|/b)toequation(30)andusetheorthogonalityrelationsthattheasymptoticallywell-behavedJ2(me−b|w|/b)modesobey.Specifically,withtheright-handsideofequation(16)vanishingforthesemodes,themodeswillthenobey

󰀆∞

d|w|e−2b|w|J2(me−b|w|/b)J2(m󰀂e−b|w|/b)=0(31)whenmisnotequaltom󰀂,withuseofsomestandardpropertiesofBesselfunctionsobliging

themtoobey

󰀆1/b󰀆∞

22

d|w|e−2b|w|J2(me−b|w|/b)=bdxxJ2(mx)

2󰀊󰀋1/bx(m/b)J22󰀋J2(mx)−J1(mx)J3(mx)0=(32)=b

22b

whenmandm󰀂areequalandmissuchthatJ1(m/b)iszero.Armedwithequations(31)and(32)wethusfindthatVJ(|w|)istobegivenby

󰀅2bBm

VJ(|w|)=(33)J2(me−b|w|/b),2J(m/b)2m0

0

2󰀉

0

m

wherethecoefficientsBmaregivenby

󰀆∞󰀆

−2b|w|−b|w|ˆBm=d|w|eVJ(|w|)J2(me/b)=−bV

0

β

ˆ󰀆mβˆbVbV

=−2[2J1(x)−xJ0(x)]=2[2J0(x)+xJ1(x)]|mβmα

mmαmˆˆbVbV

=2[2J0(mβ)+mβJ1(mβ)]−2[2J0(mα)+mβJ1(mα)].(34)mm

Witheveryquantitywhichappearsinequation(33)nowbeingknown,VJ(|w|)canreadilybeplotted,andwedisplayitinfigure1asevaluated3throughtheuseofthefirst1000modesin

3

α

xdxJ2(mx)

Whileequation(33)isgiveninclosedform,theactualsumovermodesisitselfdonenumerically.

13790

1.1

1

PDMannheimandISimbotin

VJ(w)0.5

1

00.00.20.40.60.81.00.10.20.30.4e

-w

Figure1.TheleftpanelshowsareconstructionofthesquarestepVJ(|w|)=1,1<|w|<

2,VJ=0otherwiseviatheM4discreteJ2(jie−b|w|)modebasis,withtheparameterbbeingsetequaltoone.Therightpanelshowsablow-upoftheregionnearthetopofthestep.

thesum4.Aswesee,thebasisisindeedcapableofgeneratingthesquaresteptoveryhighaccuracy,withitscompletenessthusbeingconfirmed.

Withregardtotheplotinfigure1,ascanbeseenfromtheblow-upoftheregionnearthetopofthestep,themodesumexpresslydisplaystheGibbsphenomenonassociatedwithtryingtofitadiscontinuitywithacompletebasis,withtherebeinganovershoot(tonearVJ=1.1inthefigure)atthetopofthediscontinuityandanaccompanyingundershootatthebottom,anovershootandundershootwhichasrequiredoftheGibbsphenomenonwereexplicitlyfoundtogetnarrower(in|w|)asthenumberofmodesinthesumwasincreased,butnottoshorteninheight,alwaysreachingclosetoVJ=1.1inthefigure.WeregardtherecoveringoftheGibbsphenomenonasaverygoodindicatorofthereliabilityofourconstruction,andtogetherwiththequalityoftheoverallfititself,asprovidingverygoodevidenceforcompletenessof

modebasis.theconvergentM4

5.CompletenesstestfordivergentM4modes

TotestforcompletenessofthedivergentY2(yie−b|w|)pluse2b|w|modebasis,wetrytoreconstructthesquarestepviatheexpansion

󰀅

VnY2(ne−b|w|/b)+V0e2b|w|.(35)VY(|w|)=

n

(Inequation(35)weusentodenotetheyizerosofY1(y),andshallusemtodenotetheji

zerosofJ1(y).)Nowwhilesuchareconstructionmightatfirstbethoughtunlikelytosucceedsinceeverytermontheright-handsideofequation(35)divergesbadlyinthelarge|w|regionwhereweneedthesummationtovanish,thevarioustermsinequation(35)arenotdivergingarbitrarilybut,ascanbeseenfromequation(28),areactuallyalldiverginginexactlythesamee2b|w|manner.Inconsequenceofthis,wearethereforeabletoadjustthevariouscoefficientsinequation(35)soastoexpresslycanceloutthedivergentpart.However,inordertogetVY(|w|)toactuallyvanishratherthanmerelynotdivergeoutsidethestep,wewillalsoneed

ThisparticularcompletenesstestwascarriedoutincollaborationwithDrAHGuth,DrDIKaiserandDrANayeri,andgrewoutofastudyofbrane-worldfluctuationsinwhichtheywereengagedwithoneofus(PDM).

4

Completenessofnon-normalizablemodes13791

tocancelthefinitepartthereaswell.Thus,witheachY2(y)havingaleadingbehaviouroftheform−4/πy2−1/πatsmallargument,i.e.withequation(35)behavingas

󰀁󰀂

2󰀅Vn4b1󰀅

Vn(36)VY(|w|)→e2b|w|V0−−

πnn2πnatlarge|w|,weneedtoimposethetwoconditions󰀅4b2󰀅Vn

=V0,Vn=0

πnn2

n

(37)

onthecoefficients,withthetwoleadinglarge|w|termsthenbeingcancelled.

Havingthustakencareoftheleadingbehaviouratlarge|w|,wenowtrytoproceedaswithouranalysisexpansionofVJ(|w|)inconvergentmodes.However,wecannot󰀄∞ofthe−2b|w|

Y2(ne−b|w|/b)toequation(35)aseveryoverlapintegralwouldsimplyapply0d|w|e

󰀄∞

diverge.However,wehavefounditveryconvenienttoapply0d|w|e−2b|w|J2(me−b|w|/b)toequation(35)instead,wherewetakem/btobethejizerosofJ1(y).WithnoneoftheJ1(m/b)zeroscoincidingwithanyofthezerosofY1(n/b),5theneededoverlapintegralsaregiven(onsettingx=e−b|w|/b)by

󰀆1/b󰀆∞

−2b|w|−b|w|−b|w|

d|w|eJ2(me/b)Y2(ne/b)=bdxxJ2(mx)Y2(nx)

0

and󰀆∞

󰀑󰀋1/b

nY1(nx)J2(mx)−mJ1(mx)Y2(nx)󰀋2bm2

󰀋=bx󰀋=πn2(n2−m2),(m2−n2)0

󰀐

d|w|e

−2b|w|

0

(38)

dx

J2(mx)x00

󰀎󰀏󰀆

111/bdJ1(mx)=,(39)=−dx

b0dxmx2b

overlapintegralswhichdespitethebadlydivergentbehaviourofY2(y)ande2b|w|arenonethelessactuallyfiniteduetothecompensatingconvergentbehaviourofJ2(y).On󰀄∞

thusapplying0d|w|e−2b|w|J2(me−b|w|/b)toequation(35),wefindthatforthesquarestep

ˆ,α󰀁e−b|w|/b󰀁β,VY(|w|)=0otherwise,theexpansioncoefficientsmustVY(|w|)=V

thusobey

󰀐󰀑

1V02b󰀅1m2V02b󰀅

+=+−Vn22Vn2bπnn(n−m2)2bπn(n2−m2)n2

2b󰀅Vn

=Bm=(40)

πn(n2−m2)

J2(me

−b|w|

/b)e

2b|w|

1=b

󰀆

1/b

forallm,wheretheBmcoefficientsaregivenby

󰀆β

ˆbVˆBm=−bVdxxJ2(mx)=2[2J0(mx)+mxJ1(mx)]|βαmα

ˆˆbVbV

=2[2J0(mβ)+mβJ1(mβ)]−2[2J0(mα)+mαJ1(mα)].mm

5

(41)

ThezerosofJ1(y)andY1(y)aresimple,discreteoneswhichinterlaceeachother,withfirstthreepositivezeros

ofJ1(y)forinstanceoccurringat3.832,7.016and10.173,andwiththenthpositivezerobeingwellapproximatedbyjn≈(n+1/4)πwhennislarge;whilethefirstthreepositivezerosofY1(y)occurat2.197,5.430and8.596,withthenthpositivezerobeingwellapproximatedbyyn≈(n−1/4)πwhennislarge.Whiletheseparticularapproximationsdonotholdatsmalln,theparameternwhichappearsinthejn≈(n+1/4)πandyn≈(n−1/4)πexpressionsdoesdenotethenumberofthezero(countingthefirstpositivezeroasn=1),sothatfornlargeorsmalltheseexpressionsgiveacorrectcountingofthenumberofzeros.

13792

1.1

1

PDMannheimandISimbotin

VY(w)0.5

1

00.00.20.4e-w

0.60.81.00.10.20.30.4Figure2.TheleftpanelshowsareconstructionofthesquarestepVY(|w|)=1,1<|w|<

2,VY=0otherwiseviatheM4discreteY2(yie−b|w|)pluse2b|w|modebasis,withtheparameterbbeingsetequaltoone.Therightpanelshowsablow-upoftheregionnearthetopofthestep.

WithBmbeinggiveninclosedform,equation(40)isthusasetofNequationsforNunknownsandcanbeviewedasaneigenvalueequationforVn.(WhiletheJ2(me−b|w|/b)Y2(ne−b|w|/b)overlapintegralsofequation(38)arefinite,theJ2(me−b|w|/b)andY2(ne−b|w|/b)modesarenotorthogonal,withequation(40),unlikeequation(33),thusnotbeingdiagonalinitsindices.)TheVncoefficientscanthusbedeterminedand,onbeingfoundtobefiniteandrapidlyoscillatinginsign,lead,forthecaseofthefirst1000modesinthebasis,totheplotdisplayedinfigure2(i.e.,werestricttothefirst1000yiandthefirst1000jiinequation(40)).Asfigure2thusindicates,andquitespectacularlyso,thedivergentmodebasisiseverybitascapableofreconstructingthesquarestepastheconvergentoneandeverybitascapableofrecoveringtheGibbsphenomenon,andisthuseverybitascomplete6.Itisthusinvalidtousenormalizabilityasacriterionfordiscardingmodesasnon-normalizablemodesarefullycapableofservingasacompletebasisforconstructinglocalizedpackets7.Asafinalcomment,werecallthatfortheharmonicoscillatorwaveequationtherearetwosetsofsolutions,thesinesandthecosines,andbothsetsarecomplete.Itishenceperfectlyreasonabletoexpectothersecond-orderwaveequationstoalsohavetwocompletesetsofbasesevenifoneofthemconsistsentirelyofdivergentmodes.

6.Completenesstestsfortheanti-deSitterbranecases6.1.Thebasismodes

A(|w|)

ForAdS+=Hcosh(σ−b|w|)/bwherecoshσ=b/H,4braneworldwithwarpfactore

thetransformationy=tanh(b|w|−σ)bringsequation(13)totheform

󰀐󰀑2

4dd

+ν(ν+1)−(42)(1−y2)2−2yfm(y)=0.

dydy(1−y2)

wherewehaveintroducedtheconvenientparameterνdefinedby

󰀏1/2󰀎

m219m2

+2−,=(ν−1)(ν+2).(43)ν=

4H2H2

Thereconstructionofthesquarestepusingthedivergentmodebasisissogoodthattheonlyperceptibledifference

betweenfigures1and2isthatintheregionclosetoe−w=0,theJ2(me−b|w|/b)contributioniseversoslightlythicker.(Theconstraintsofequation(37)forceamorerapidconvergenceontheY2(ne−b|w|/b)modesum.)7FortheM−braneworldthisisjustaswell,sinceitcouldotherwisenotcontainanymasslessgraviton.

4

6

Completenessofnon-normalizablemodes13793

Equation(42)isrecognizedasanassociatedLegendreequation,withitssolutionsbeingtheassociateLegendrefunctionsofthefirstandsecondkinds,sothatform=0(namelyν=1)wecanset

fm(y)=αmPν2(y)+βmQ2ν(y).

(44)

Thissolutionalsoappliestooneofthem=0solutionsaswell,namelyQ21(y),aquantity

22

whichcanbewrittenintermsofthewarpfactorasQ1(y)=2/(1−y)=2cosh2(b|w|−σ)=

2

(y)iskinematicallyzero.Thissecond2b2e2A(|w|)/H2,butmissesoneothersolutionsinceP1

m=0solutioncanbefoundbysettingν=1inequation(42)andsolvingitdirectly,toyield

󰀎󰀏

2

f0(y)=α0(45)−y+β0Q21(y).(1+y)

Requiringthemodestoalsoobeythejunctionconditionofequation(14)thenrestrictsthemaccordingto

αmPν1(−tanhσ)+βmQ1ν(−tanhσ)=0,

α0=0,

(46)

tothusdefinetheAdS+4braneworldbasismodes.

2

Asfunctions,allofthefunctionsPν1(y),Pν2(y),Q1ν(y)andQν(y)possessacutinthecomplexyplanewhichcanbelocatedtorunfromy=−∞toy=1.FortheAdS+4braneworldtheparametery=tanh(b|w|−σ)liesintherange−tanhσ󰀁y󰀁1,andsointhisrangetheLegendrefunctionshavetobeevaluatedonthecut(astherealPνµ(y)=(1/2)[eiπµ/2Pνµ(y+

−iπµiπµ/2µ

i󰀱)+e−iπµ/2Pνµ(y−i󰀱)],Qµ/2)[e−iπµ/2QµQν(y−i󰀱)])whereν(y)=(eν(y+i󰀱)+e

theycanthenbepowerseriesexpandableviatheirrelationtohypergeometricfunctionstoyield

(−1)m󰀃(ν+m+1)m

(1−y2)m/2F(ν+m+1,−ν+m;m+1;(1−y)/2)Pν(y)=m

2m!󰀃(ν−m+1)

󰀐

(ν+m+1)(−ν+m)(1−y)(−1)m󰀃(ν+m+1)

(1−y2)m/21+=m

2m!󰀃(ν−m+1)(m+1)1!2

󰀑

(ν+m+1)(ν+m+2)(−ν+m)(−ν+m+1)(1−y)2++···,

(m+1)(m+2)2!22

eimπ2ν󰀃(ν+1)󰀃(ν+m+1)m

Qν(y)=F(ν−m+1,ν+1;2ν+2;2/(1+y))

󰀃(2ν+2)(1+y)ν+1−m/2(1−y)m/2

󰀐

󰀃(m)eimπ2ν󰀃(ν+1)󰀃(ν+m+1)

=

(1+y)ν+1−m/2(1−y)m/2󰀃(ν+1)󰀃(ν+m+1)(ν−m+1)n(ν+1)n(y−1)n(−1)m(y−1)m

+×n(1−m)n!(y+1)󰀃(ν−m+1)󰀃(ν+1)(y+1)mnn=0

󰀐∞󰀅(ν+1)n(ν+m+1)n(y−1)n

ψ(n+1)+ψ(n+m+1)×n(n+m)!n!(y+1)n=0

󰀎󰀏󰀑󰀑1−y

−ψ(ν+1+n)−ψ(ν+m+1+n)−log(47)

1+y

whenµisageneralpositiveintegerm.(Inequation(47),ψ(y)denotes(d󰀃(y)/dy)/󰀃(y)and(a)ndenotes󰀃(a+n)/󰀃(a).)Fromequation(47)weseethatinthe−tanhσ󰀁y󰀁1rangeofinterestthePν2(y)functionsarewellbehaved,behavingasyapproachesonefrombelow(namelyas|w|→∞)as

󰀑󰀐22

(ν+ν−3)(1−y)

(48)Pν2(y→1)→P(ν)(1−y)−

6

m−1󰀅

13794PDMannheimandISimbotin

where

ν(ν2−1)(ν+2)

,(49)P(ν)=

4

tothusbefullynormalizableandhavefinitenormalization

󰀆∞󰀆∞󰀆

󰀉2󰀉2󰀊2󰀊2󰀉󰀊22b1−2A−2A

Nν=Pν(|w|)=2Pν(|w|)=2dwed|w|edyPν2(y).

H−tanhσ−∞0

(50)However,unlikethePν2(y),theQ2ν(y)areallfoundtodivergeaty=1,behavingthereas

Q2ν(y→1)→

(ν2+ν−1)1

++O((1−y)ln(1−y)),

(1−y)2

(51)

22

andthusintheAdS+4braneworldnoneofQν(y),andparticularlythemasslessQ1(y)graviton,arenormalizable.Weshallthusseektoconstructcompletebasesinboththenormalizableandnon-normalizablesectors.

6.2.CompletenesstestforconvergentAdS+4modes

ToconstructacompletebasisoutofnormalizablemodesalonerequiresthatthenormalizablePν2(y)satisfyequation(46)allontheirown,withtheeigenmodesthenneedingtosatisfy

Pν1(−tanhσ)=Pν1(−(1−H2/b2)1/2)=0.

(52)

Forarbitraryσthesolutionstoequation(52)cannotbewritteninaclosedform,butonnotingthatforoneparticularvalueofσ,namelyσ=0(i.e.,H=b),Pν1(0)isknowninclosedformas

2π1/21

,(53)Pν(0)=

󰀃(ν/2+1/2)󰀃(−ν/2)

tothusbezeroatν=2,4,6,...,weseethatonsolvingforanarbitrarygivenσnumericallyaninfinitediscretesetofallowedνvalueswillthenbefoundtoensue8.ThenormalizablemodesectorofAdS+4isthusdiscreteandinfinite,aresultfirstobtainedin[7]bydirectlynumericallysolvingequation(13).

TotestforcompletenessofthenormalizableAdS+4modebasis,weneedtofindasetofcoefficientsVmforwhichtheexpansion

󰀅VP=VmPν2(y)(54)

m

ˆwhen|w1|<|w|<|w2|,VP=0otherwise.WithreproducesthesquarestepVP=V

thePν2(y)modesbeingorthogonal,thecoefficientsarereadilygivenasVm=Bm/NνwhereNνisthenormalizationfactorgiveninequation(50),wheremandνarerelatedasinequation(43),andwheresomestandardpropertiesoftheassociatedLegendrefunctionsallowtheBmcoefficientstobewrittenas

󰀆|w2|2ˆb󰀆y2ˆb󰀆y2VV−2A222dPν(y)ˆd|w|ePν(|w|)=2dyPν(y)=2dy(1−y)Bm=V

Hy1Hy1dy2|w1|

󰀑ˆb󰀆y2󰀐dV

=2dy[(2−ν)yPν+νPν−1]−2Pν

Hy1dy

Thetypicalcaseoftanhσ=0.9(namelyH/b=0.436)yieldsν=1.088,2.216and3.362asthe

1(−tanhσ)=0,withthenthpositivezerobeingwellapproximatedbythreelowestpositivesolutionstoPν

νn≈(n+1/4)π/arccos(−tanhσ)−1/2whennislarge.

8

Completenessofnon-normalizablemodes

1.1

1

13795

VP(w)0.5

1

0

0.0-0.50.5tanh[w - arctanh(.9)]

1.00.10.2Figure3.TheleftpanelshowsareconstructionofthesquarestepVP(w)=1,0.1󰀁

2tanh(b|w|−arctanh(0.9))󰀁0.2,VP(w)=0otherwise,viatheAdS+4discretePν(tanh(b|w|−σ))

modebasisinthetypicalcasewheretanhσ=0.9,H/b=0.436andb=1.Therightpanelshowsablow-upoftheregionnearthetopofthestep.

󰀑󰀐ˆb󰀆y2Vd(2−ν)2

=2dy[(ν+1)Pν+1+νPν−1]+νPν−1−(Pν+1−Pν−1)Hy1dy(2ν+1)(2ν+1)

󰀋

ˆb󰀐(ν+1)(ν+2)Pν−1−ν(ν−1)Pν+1󰀑󰀋y2V󰀋.=2(55)󰀋H2ν+1y1

Witheveryquantitywhichappearsinequation(54)nowbeingknown,VP(|w|)canreadilybeplotted,andwedisplayitinfigure3asevaluatedthroughtheuseofthefirst1000modesinthesum.Aswesee,thebasisisindeedcapableofgeneratingthesquaresteptoveryhighaccuracy,andwithitexpresslydisplayingtheGibbsphenomenon9,itscompletenessisthusconfirmed.

6.3.CompletenesstestfordivergentAdS+4modes

2WiththemasslessAdS+4gravitonwithdivergentwarpfactorwavefunctionf0(y)=β0Q1(y)=2β0/(1−y2)obeyingthejunctioncondition,itcouldalsobelongtoacompletebasisofdivergentQ2ν(y)modes(modeswhichaccordingtoequation(51)actuallydivergeinpreciselythesame1/(1−y)wayneary=1asthemasslessgravitonitself)iftheQ2ν(y)modesweretosatisfythejunctionconditionontheirown,i.e.iftheyweretoobey

1221/2

)=0.Q1ν(−tanhσ)=Qν(−(1−H/b)

(56)

Withequation(56)beingfoundtopossessaninfinitesetofdiscretesolutionsforthe

ˆwhenarbitraryσ,10weshallthusseektoexpandthelocalizedsquarestepVQ=V

|w1|󰀁|w|󰀁|w2|,VQ=0otherwise,intermsofthesesolutionsas

󰀅V0

VnQ2.(57)VQ=ν(y)+21−yn

ItispossiblethatthismightperhapsbethefirsttimethattheGibbsphenomenonhasexplicitlybeendemonstrated

forassociatedLegendrefunctions,andespeciallyforthedivergentQ2ν(y)modeswhichweshowbelow.

10Thetypicalcaseoftanhσ=0.9yieldsν=0.536,1.649and2.788asthethreelowestpositivesolutionstoQ1ν(−tanhσ)=0,withthenthpositivezerobeingwellapproximatedbyνn≈(n−1/4)π/arccos(−tanhσ)−1/2

1(−tanhσ)=0andQ1(−tanhσ)=0thusinterlacingeachother.Asregardswhennislarge,withthezerosofPνν

2theQ1ν(−tanhσ)=0solutions,wenoteadditionallythatthelowestpositiveoneactuallycorrespondstoanm<0

tachyonsinceithasν<1.

9

13796PDMannheimandISimbotin

(Forclarityweusen2heretodenotethesquaredmassesn2/H2=(ν−1)(ν+2)ofthe

22

Q2ν(y)sectormodes,andusemforthePν(y)sector.)Giventheasymptoticlimitexhibitedinequation(51),inordertofirstcancelboththeleading1/(1−y)termandthenexttoleadingO(1)termfromtheright-handsideofequation(57),wemustconstraintheVncoefficientsaccordingto

󰀅1󰀅V0V0

=0,=0,(58)Vn+Vn(ν2+ν−1)+224nntothusenableustoreexpressthesquarestepexpansionas

󰀑󰀅󰀐2

VQ=,VnQ2ν(y)−21−yn

(59)

assubjecttotheconstraint󰀅󰀅n22

Vn[ν+ν−2]=Vn2=0.(60)

Hnn

󰀄∞

Whilewecannotapply0d|w|e−2AQ2overlapintegralν(y)toequation(59)asevery󰀄∞

woulddiverge,finiteoverlapintegralsareobtainedifweinsteadapply0d|w|e−2APν2󰀂(y),whereweuseν󰀂tolabelthePν2󰀂(y)sectorsothatitssquaredmassesaregivenbym2/H2=(ν󰀂−1)(ν󰀂+2).WithnoneofthePν1󰀂(−tanhσ)andQ1ν(−tanhσ)zerosbeingfoundtocoincide,viaequations(16),(48)and(51),theneededoverlapintegralsarefoundtobeoftheform

󰀆∞

4bP(ν󰀂)−2A22

(61)d|w|ePν󰀂(y)Qν(y)=

(m2−n2)0

(P(ν󰀂)isgiveninequation(49)),andareindeedfinite,justasrequired.Withtheoverlapintegralwhichinvolvesthemasslessgravitonmodebeinggivenby

󰀆∞2

2bP(ν󰀂)−2APν󰀂(y)d|w|e,(62)=

(1−y2)m20

󰀄∞

theapplicationof0d|w|e−2APν2󰀂(y)toequation(59)thusyields

󰀑󰀅󰀐󰀅b(m2+2H2)n211󰀂

4bVnP(ν)Vn42(63)−2==Bm,2−n2)2)(mmH(m−nnnwhereBmisthesamefunctionthatwasalreadygivenearlierinequation(55).

Givenequation(63),theVncoefficientscannowbefoundnumerically,andlead,forthecaseofthefirst1000modesinthebasis,totheplotdisplayedinfigure4(i.e.,werestricttothefirst1000Pν1󰀂(−tanhσ)zerosandthefirst1000Q1ν(−tanhσ)zeros).Asfigure4thusindicates,thedivergentmodebasisiseverybitascapableofreconstructingthesquarestepastheconvergentoneandeverybitascapableofrecoveringtheGibbsphenomenon,andisthuseverybitascomplete11.Onceagainthenweseethatitisinvalidtousenormalizabilityasacriterionfordiscardingmodes,andinthisregardwedifferfromtheviewof[7]thatitispermissibletodiscardmodessuchasthemasslessAdS+4gravitonsimplybecausetheyarenot

12

normalizable.

11

Theconstructionissogoodthattheonlyperceptibledifferencebetweenfigures3and4isthatintheregionsclosetotheedgesofthestepstheGibbsphenomenonovershoot,asshowninfigure3blow-upiseversoslightlycloserto1.1thantheoneshownintheblow-upoffigure4.

12SincethenegativetensionAdS−braneworldwithdivergentwarpfactoreA(|w|)=Hcosh(σ+b|w|)/balsohas

4

2(y)anddivergentQ2(y)modes(wherenowy=tanh(b|w|+σ)withrangetanhσ󰀁y󰀁1),itsconvergentPνν

structureisanalogoustothatofthedivergentwarpfactorAdS+4world,andsowedonotseekcompletenesstestsforithere.

Completenessofnon-normalizablemodes

1.1

1

13797

VQ(w)0.5

1

0

0.0-0.50.5tanh[w - arctanh(.9)]

1.00.10.2Figure4.TheleftpanelshowsareconstructionofthesquarestepVQ(w)=1,0.1󰀁

2tanh(b|w|−arctanh(0.9))󰀁0.2,VQ(w)=0otherwise,viatheAdS+4discreteQν(tanh(b|w|−σ))

pluscosh2(tanh(b|w|−σ))modebasisinthetypicalcasewheretanhσ=0.9,H/b=0.436andb=1.Therightpanelshowsablow-upoftheregionnearthetopofthestep.

7.CompletenesstestsforthedeSitterbranecases7.1.Thebasismodes

A(|w|)

FordS±=Hsinh(σ∓b|w|)/bwheresinhσ=b/H,4braneworldswithwarpfactore

thetransformationy=coth(σ∓b|w|)bringsequation(13)totheform

󰀑󰀐2

4dd

+ν(ν+1)−fm(y)=0,(1−y2)2−2y(64)

dydy(1−y2)

wherewehaveintroducedtheconvenientparameterνdefinedby

󰀎󰀏1/29m2m21−−,=(1−ν)(ν+2).(65)ν=

4H22H2

Recognizingequation(64)tobethepreviouslydiscussedassociatedLegendreequation,itsm=0(namelyν=1)solutionsaregivenas

fm(y)=αmPν2(y)+βmQ2ν(y),

(66)

whileitsν=1solutionsareoftheform

󰀎󰀏

2

−y+β0Q2(67)f0(y)=α01(y).(1+y)

Requiringthemodestoalsoobeythejunctionconditionofequation(14)thenrestrictsthemaccordingto

αmPν1(cothσ)+βmQ1ν(cothσ)=0,

α0=0,

(68)

tothusdefinethedS±4brane-worldbasismodes.+

WhilethedS4anddS−4basismodesarequitesimilartoeachotherintheirgenericstructure,theydifferfromeachothersignificantlyinonecrucialregard.Specifically,unlike

A(|w|)

=Hsinh(σ+b|w|)/bwhichnevervanishes(σhavingbeenthedS−4warpfactore

A(|w|)

definedtobepositive),thedS+=Hsinh(σ−b|w|)/bhasazeroat4warpfactore

b|w|=σ.Withanullsignaltakinganinfiniteamountoftimetotravelfromthebranetothelocationofthiszero,thiszeroservesasahorizonforanobserveronthebrane[8],withthebraneobserveronlybeingsensitivetofluctuationmodesintheσ󰀂b|w|󰀂0region.WiththedS+4parametery=coth(σ−b|w|)lyingintherangecothσ󰀁y󰀁∞,wesee

13798PDMannheimandISimbotin

thatyisinfiniteatthedS+4horizon.Then,withtheassociatedLegendrefunctionsbehaving

2ν−ν−1

)asy→∞,theν=1masslessdS+asPν(y)→O(y)+O(y−ν−1),Q2ν(y)→O(y4

221/2

gravitonandalldS+modeswithcomplexν=−1/2±i(m/H−9/4)willbenormalizable4

withinthehorizon13.Withthemasslessgravitonandamassivecontinuumofmodeswithm2/H2󰀂9/4whichsatisfythejunctionconditionofequation(68)byaninterplay(oftherealPν2(y)andtherealpartofQ2ν(y))thusprovidingaconventionalcontinuumnormalized

+

braneworld,inthedS+completebasisinthesenseofequations(1)–(5),aswiththeM44brane

worldthereisnoneedtotestexplicitlyforcompleteness.

However,fordS−4thesituationisquitedifferentsincethereisnownovanishingofthewarpfactorandnohorizon,withthecoordinate|w|nowextendingallthewaytoinfinity,andwiththeparametery=coth(σ+b|w|)insteadnowlyinginthe1󰀁y󰀁cothσ=(1+H2/b2)1/2range.UnlikethepreviouslydiscussedAdS+4braneworldcasewhereyapproachedonefrom

belowas|w|wenttoinfinity,inthedS4caseyinsteadapproachesonefromaboveinthelarge|w|limit,withequations(48)and(51)havingtobereplacedbythelimits

󰀑󰀐22

(ν+ν−3)(y−1)

Pν2(y→1)→P(ν)(y−1)+

6

(69)2

(ν+ν−1)1

−+O((y−1)ln(y−1)),Q2ν(y→1)→(y−1)2whereP(ν)=ν(ν2−1)(ν+2)/4isasgiveninequation(49).SincethePν2(y)arewell

+

behavedaty=1,whileQ2ν(y)divergethere,aswiththeAdS4case,thenormalizablesectorwillconsistofallPν2(coth(σ+b|w|))modeswhichsatisfythejunctionconditionontheirownaccordingto

Pν1(cothσ)=Pν1((1+H2/b2)1/2)=0,

(70)

whilethenon-normalizablesectorwillconsistofthedivergentwarpfactorwavefunction

2

Q21(coth(σ+b|w|))(=2/(y−1)iny>1)masslessgravitonandallmassive

WiththearbitraryhypergeometricfunctionF(a,b;c,z)beingequaltoonewhenitsargumentzistakentobezero,

2(y)andQ2(y)arereadilyobtainedfromtheir|y|>1hypergeometricfunctionrepresentationsthelargeylimitsofPνν

µ

oftheformPν(y)=2ν+1󰀃(−2ν−1)󰀃−1(−ν)󰀃−1(−ν−µ)(y+1)µ/2−ν−1(y−1)−µ/2F(ν+1,ν−µ+1;2ν+2,2/(1+y))+2−ν󰀃(2ν+1)󰀃−1(ν+1)󰀃−1(ν−µ+1)(y+1)µ/2+ν(y−1)−µ/2F(−ν,−ν−µ;−2ν,2/(1+y)),µ

Qν(y)=eiµπ2−ν−1π1/2󰀃(ν+µ+1)󰀃−1(ν+3/2)y−ν−µ−1(y2−1)µ/2F(ν/2+µ/2+1,ν/2+µ/2+1/2;ν+3/2,1/y2).

µµ

WhiletheserepresentationsshowthatPν(y)andQν(y)willingeneralbecomplexinthe|y|>1region,theform

µ

forPν(y)showsthatitwillactuallyberealwhenyandµarerealandtheparameterνtakesthevalueν=−1/2+iλwhereλisreal,avalueforwhichthequantityν(ν+1)=(ν+1/2)2−1/4whichappearsinthedefiningequationfortheassociatedLegendrefunctionsofequation(64)isthengivenastherealν(ν+1)=−λ2−1/4.With

2(y)andtherealandimaginaryequation(64)remainingrealatν=−1/2+iλ,forsuchvaluesofνthethenrealPν

2partsofQν(y)willallseparatelyobeyit.However,sinceequation(64)canonlyhavetwoindependentsolutions,

itmustbethecasethatoneofthesethreeclassesofsolutionsisredundant.Onnotingthatnomatterwhatthe

2valueofν,thedivergentpartofQ2ν(y)aty=1isrealwhilePν(y)iswellbehavedthere,wethusanticipatethat

whenyisrealandgreaterthanone,itmustbethe(thuswellbehavedaty=1)imaginarypartofQ2−1/2+iλ(y)

2whichmustcoincidewiththerealP−1/2+iλ(y);andsinceitisnotimmediatelyobvioushowonemayexplicitlycheck

suchaconnectionanalytically,wehaveinsteadconfirmeditnumerically.Inthefollowing,thenwecanrestrict

−+22thediscussiontotheuseofP−1/2+iλ(y)andRe[Q−1/2+iλ(y)]asbasismodes(inboththedS4andthedS4brane

µ

worlds).AswellasenablingustoshowthatPν(y)isrealforrealy,realµandcomplexν=−1/2+iλ,the

µµ

aboverepresentationsofthePν(y)andQν(y)arealsoofuseforactualcomputationalpurposeswhenyisgreaterthanone,sinceforargument|z|<1ahypergeometricfunctioncanberepresentedastheabsolutelyconvergent󰀃∞

powerseriesF(a,b;c,z)=[󰀃(c)/󰀃(a)󰀃(b)]n=0󰀃(a+n)󰀃(b+n)zn/[󰀃(c+n)n!].Moreover,forlargevalues

µµµ

oftheparameterλ,thefunctionsP−1/2+iλ(y)andRe[Q−1/2+iλ(y)]canevenbeapproximatedbyP−1/2+iλ(coshθ)=λµ−1/2(2/πsinhθ)1/2cos(λθ+µπ/2−π/4)−λµ−3/2(1/2πsinhθ)1/2(µ−1/2)(µ+1/2)cothθsin(λθ+µπ/2−π/4)

µ

andRe[Q−1/2+iλ(coshθ)]=λµ−1/2(π/2sinhθ)1/2cos(λθ+µπ/2+π/4)−λµ−3/2(π/8sinhθ)1/2(µ−1/2)(µ+1/2)cothθsin(λθ+µπ/2+π/4).(Itisnecessarytocarrythefirstnon-leadingtermsheresincetheoscillatoryleadingtermscanvanishatsomespecificθvalues.)

13

Completenessofnon-normalizablemodes13799

Q2ν(coth(σ+b|w|))modeswhichobey

1221/2

Q1)=0.ν(cothσ)=Qν((1+H/b)

(71)

WhilethispatternisthusquitesimilartothesituationfoundintheAdS+4case,thedS4braneworlddiffersfromitinonekeyregard,namelythattheparameteryisrequiredtobegreaterorequaltooneratherthanlessthanorequaltoit,andthusthecompletenessofitsmodebasesrequiresindependenttesting.

7.2.CompletenesstestforconvergentdS−4modes

Withthegeneralequation(16)takingtheform󰀎2󰀏󰀆cothσm1m2

−2dyfm1(y)fm2(y)2HH21

󰀐󰀑

(y)(y)dfdfm1m2

−(y2−1)fm1(y)=lim(y2−1)fm2(y)

y→1dydy

(72)

22

inthedS−4case,andwiththePν(y)modesbehavingneary=1asinequation(69),thePν(y)modesformanorthonormalbasis,andwecanthusnormalizethusthemaccordingto

󰀆∞󰀆

󰀉2󰀊22bcothσ󰀉2󰀊2−2A

Pν(|w|)=2dwedyPν(y).(73)Nν=

H1−∞

WiththecothσargumentofPν1(cothσ)inequation(70)beinggreaterthanone,the

Pν1(cothσ)=0conditionhasnosolutionswithrealν.Rather,allofitssolutionsareoftheformν=−1/2+iλwhereλisrealanddiscrete14.Accordingtoequation(65),forsuchsolutionstheassociatedsquaredmassesobeym2/H2=9/4+λ2andarethusnicelypositive.Additionally,asnotedpreviously,fortheparticularchoiceofν=−1/2+iλ,thePν2(y)modewavefunctionsthemselvesarereal.

HavingnowexplicitlyidentifiedthedS−4normalizablemodebasis,totestforcompletenessweneedtofindasetofcoefficientsVmforwhichtheexpansion

󰀅ˆVP=VmPν2(y)(74)

m

ˆP=Vˆwhen|w1|<|w|<|w2|,VˆP=0otherwise.WithreproducesthesquarestepV

thePν2(y)modesbeingorthogonal,thecoefficientsarereadilygivenasVm=Bm/NνwhereNνisthenormalizationfactorgiveninequation(73),wheremandνarerelatedasinequation(65),andwheretheBmaregivenas

󰀆|w2|

ˆb󰀆y2ˆb󰀆y2VVd2Pν(y)−2A222ˆBm=Vd|w|ePν(|w|)=−2dyPν(y)=−2dy(y−1)HHdy2y1y1|w1|

󰀑ˆb󰀆y2󰀐dV

=−2dy[(ν−2)yPν−νPν−1]+2Pν

Hy1dy

WiththedS−4braneworldrangeforybeingrestrictedtothefiniterange1󰀁y󰀁cothσ,incasesinwhichwerestrict

2(y),P1(y)andtocothσ<3,weareactuallyabletouseanextremelycompactrepresentationforevaluationofPνν

m2m/2mPν(y),namelytheformPν(y)=(y−1)󰀃(ν+m+1)F(−ν+m,ν+m+1,m+1,(1−y)/2)/[2m!󰀃(ν−m+1))]

whichholdsforanypositiveintegerm,andthelimitingformPν(y)=F(−ν,ν+1,1,(1−y)/2))whichholdswhenm=0,aseachofthesehypergeometricfunctionrepresentationscanbewrittenasapowerserieswhichisabsolutelyconvergentovertheentire1󰀁y󰀁3range.Fromtheserepresentationwefindinatypicalcasewithcothσ=1.1

1thatthethreelowestpositiveλsolutionstoP−1/2+iλ(cothσ)=0aregivenasλ=8.624,15.808and22.930,with

thenthpositivesolutionbeingwellapproximatedbyλn≈(n+1/4)π/arccosh(cothσ)whennislarge.

14

13800

1.1

1

PDMannheimandISimbotin

VP(w)0.5

1

^01.001.021.041.061.08coth[arccoth(1.1) + w]

1.101.051.06ˆP(w)=1,1.05󰀁Figure5.TheleftpanelshowsareconstructionofthesquarestepV

−2(coth(σ+b|w|))ˆcoth(arccoth(1.1)+b|w|)󰀁1.06,VP(w)=0otherwise,viathedS4discretePν

modebasisinthetypicalcasewherecothσ=1.1,H/b=0.458andb=1.Therightpanelshowsablow-upoftheregionnearthetopofthestep.

󰀑ˆb󰀆y2d󰀐(ν−2)V2

=−2[(ν+1)Pν+1+νPν−1]−νPν−1+(Pν+1−Pν−1)

Hy1dy(2ν+1)(2ν+1)

󰀋

ˆb󰀐[ν(ν−1)Pν+1−(ν+1)(ν+2)Pν−1]󰀑󰀋y2V󰀋.=−2(75)󰀋H2ν+1y1

ˆP(|w|)canreadilybeplotted,andwedisplayitinfigure5asevaluatedGivenequation(75),V

throughtheuseofthefirst500modesinthesum.Aswesee,thebasisisindeedcapableofgeneratingthesquaresteptoveryhighaccuracy,andwithitalsonicelydisplayingtheGibbsphenomenon,itscompletenessisthusconfirmed.7.3.CompletenesstestfordivergentdS−4modes

AswiththePν1(cothσ)=0condition,thesolutionstoQ1ν(cothσ)=0arealsoalloftheformν=−1/2+iλwhereλisagainrealanddiscrete,withthesolutionstoPν1(cothσ)=0

15

andQ1ν(cothσ)=0beingfoundtointerlaceeachother.WithitbeingonlytherealpartsoftheQ2ν(y)wavefunctionswithν=−1/2+iλandyrealwhichareindependentofthereal2

Pν(y),thenon-normalizabledS−4braneworldmodebasisconsistsofthemasslessgravitonwithitsrealwarpfactorwavefunctionplustherealpartsoftheQ2ν(y)wavefunctionswiththeappropriateν=−1/2+iλ.Then,withthey→1limitofequation(69)holdingfor

2

thegeneralQ2ν(y)witharbitraryν,weseethattherealpartsoftheQν(y)wavefunctionsallhavethesame1/(y−1)leadingbehaviouraty=1asthemasslessgravitonitself,withthenon-normalizablemodesalldivergingaty=1󰀉at2one󰀊andthesamerate.

InordertotestforcompletenessintheReQν(y)plusmasslessgravitonsector,weneed

ˆQ=Vˆwhen|w1|󰀁|w|󰀁|w2|,VˆQ=0otherwise,intoexpandthelocalizedsquarestepV

termsofthesesolutionsas

󰀅󰀉󰀊V0

ˆVQ=.(76)VnReQ2(y)+ν2−1yn

Thetypicalcaseofcothσ=1.1yieldsλ=4.928,12.231and19.373asthethreelowestpositiveλ

solutionstoRe[Q1−1/2+iλ(cothσ)]=0,withthenthpositivesolutionbeingwellapproximatedbyλn≈(n−1/4)π/arccosh(cothσ)whennislarge.

15

Completenessofnon-normalizablemodes13801

(Aspreviously,forclarityweusen2heretodenotethesquaredmassesoftheQ2ν(y)

22

sectormodes,andusemforthePν(y)sector.)Giventheasymptoticlimitexhibitedinequation(69),inordertocancelboththeleading1/(y−1)termandthenexttoleadingO(1)termfromtheright-handsideofequation(76),wemustconstraintheVncoefficientsaccordingto

󰀅1󰀅V0V0

=0,=0,(77)Vn+Vn(ν2+ν−1)+224nntothusenableustoreexpressthesquarestepexpansionas

󰀑󰀅󰀐󰀉󰀊22ˆQ=V,VnReQν(y)−2

y−1n

(78)

assubjecttotheconstraint

󰀅󰀅n22

Vn[ν+ν−2]=−Vn2=0.(79)

Hnn

󰀄∞󰀄cothσ

Onnowapplying0d|w|e−2APν2󰀂(|w|)=(b/H2)1dyPν2󰀂(y)toequation(78)whereν󰀂2+ν󰀂−2=−m2/H2,useoftherelations

󰀆󰀆

1cothσcothσ

dyPν2󰀂(y)Re

󰀉2󰀊4H2P(ν󰀂)

,Qν(y)=

(m2−n2)

(80)(81)

1

Pν2󰀂(y)2H2P(ν󰀂)

=dy2,

(y−1)m2

whichfollowfromequations(69)and(72)(withP(ν󰀂)=ν󰀂(ν󰀂2−1)(ν󰀂+2)/4nowbeing

givenbym2(m2−2H2)/4H4)thenyields

󰀑󰀅󰀐󰀅1b(m2−2H2)n21󰀂

−2==Bm,VnP(ν)Vn(82)4b2−n2)4(m2−n2)(mmHnnwhereBmisthesamefunctionthatwasalreadygivenearlierinequation(75).

Givenequation(82),theVncoefficientscannowbefoundnumerically,andlead,forthecaseofthefirst500modesinthebasis,totheplotdisplayedinfigure6(i.e.,werestricttothefirst500Pν1󰀂(cothσ)zerosandthefirst500Re[Q1ν(cothσ)]zeros).Asfigure6thusindicates,thedivergentmodebasisiseverybitascapableofreconstructingthesquarestepastheconvergentoneandeverybitascapableofrecoveringtheGibbsphenomenon,andisthuseverybitascomplete.Aswithourearlierexamplesthen,weonceagainconfirmthatcompletenessisnotatalltiedtonormalizability.8.Finalcomments

Inthiswork,wehaveshownthatinandofitselftherequirementofnormalizabilityofbasismodesisnotatallneededforcompleteness,andthatonecanconstructlocalizedstepsoutofbaseswhosemodesarenotnormalizableatall.Sincethelocalizedstepsthatwehaveconstructedoutofnon-normalizablebasesinvolveexpansioncoefficientsVnwhichareexplicitlyfoundtobefinite,thissuggeststhatweshouldbeabletoconstructpropagatorsinvolvingthemodesinwhichthesemodesappearaspoleswhichhaveresidueswhicharethemselvesfinite.Thus,insharpcontrasttothesituationinwhichpropagatorsarebuiltoutofnormalizablemodes,forpropagatorswhicharebuiltoutmodesofwhicharenotnormalizable,

13802PDMannheimandISimbotin

1.1

1

VQ(w)0.5

1

^01.001.021.041.081.06coth[arccoth(1.1) + w]

1.101.051.06ˆQ(w)=1,1.05󰀁Figure6.TheleftpanelshowsareconstructionofthesquarestepV−ˆcoth(arccoth(1.1)+b|w|)󰀁1.06,VQ(w)=0otherwise,viathedS4discreteRe[Q2ν(coth(σ+

2

b|w|))]plussinh(coth(σ+b|w|))modebasisinthetypicalcasewherecothσ=1.1,H/b=0.458andb=1.Therightpanelshowsablow-upoftheregionnearthetopofthestep.

theseresiduesmustthennotberelatedtonormalizationconstantsortoanybilinearintegralsofthemodesatallforthatmatter.

Toexplicitlyconstructsuchdivergentmodebasedpropagators,wemustfirstintroduceexplicitsourceterms.Forthecaseofinteresttothebraneworld,thesourceistypicallytaken

TT

whichisconfinedtothebraneattobeatransverse-tracelessenergy–momentumtensorSµν

w=0,withequations(10)and(11)beingreplacedby(see,e.g.,[6])

󰀂󰀁󰀏2󰀎2

∂dA˜α∇˜αhTT−4+e−2A∇(83)µν=0,2∂|w|d|w|

󰀑󰀐

dA∂2TT−2hTTδ(w)(84)µν=−κ5δ(w)Sµν,∂|w|d|w|

2

whereκ5isthebrane-worldgravitationalconstant.

+

braneworldwhereequations(83)andForthecasefirstoftheconvergentwarpfactorM4

(84)reduceto

󰀑󰀐2

∂22b|w|αβTT

h−4b+eη∂∂(85)αβµν=0,∂|w|2

󰀐󰀑∂2TT

(86)δ(w)+2bhTTµν=−κ5δ(w)Sµν,∂|w|

onrecallingthattheBesselfunctionsobey

󰀐󰀎b|w|󰀏󰀎b|w|󰀏󰀑󰀑󰀐dqeqe

+2bαqJ2+βqY2

d|w|bb

󰀐󰀎b|w|󰀏󰀎b|w|󰀏󰀑

qeqeb|w|

αqJ1+βqY1,(87)=qe

bb

anexplicitsolutiontoequations(85)and(86)canreadilybegiven,namely[9]

2󰀆b|w|κ/b)+βqY2(qeb|w|/b)]TT󰀂5TT4󰀂4ip·(x−x󰀂)[αqJ2(qehµν(x,|w|)=−Sµν(x)dxdpe(2π)4q[αqJ1(q/b)+βqY1(q/b)]

󰀆2+TTˆTT(x,x󰀂,w,0;αq,βq,M4=−2κ5d4x󰀂G)Sµν(x󰀂),(88)

Completenessofnon-normalizablemodes13803

¯2(qbeingunderstoodtohavethesamesignasp0here),andαqandβqwhereq2=(p0)2−p

arearbitraryconstants.

braneworldwhereThegeneralizationofthissolutiontothedivergentwarpfactorM4

wehave

󰀑󰀐2

−4b2+e−2b|w|ηαβ∂α∂βhTT(89)µν=0,2∂|w|

󰀑󰀐

∂2TT

−2bhTTδ(w)(90)µν=−κ5δ(w)Sµν,∂|w|and

󰀐

󰀑󰀐

󰀎−b|w|󰀏󰀑󰀏

qe−b|w|qeαqJ2+βqY2

bb󰀐󰀎−b|w|󰀏󰀎−b|w|󰀏󰀑

qeqe

+βqY1,=−qe−b|w|αqJ1

bb

󰀆󰀆

ip·(x−x󰀂)[αqJ2(q

d

−2bd|w|

󰀎

(91)

isoftheform[6]

2κ5TT

hµν(x,|w|)=

(2π)4

dxdpe

4󰀂4

e−b|w|/b)+βqY2(qe−b|w|/b)]TT󰀂

Sµν(x)

q[αqJ1(q/b)+βqY1(q/b)]

(92)

=2−2κ5TT

ˆTT(x,x󰀂,w,0;αq,βq,M−)Sµνd4x󰀂G(x󰀂),4

withαqandβqagainbeingarbitraryconstants.Thatthesolutionofequation(92)satisfies

equation(89)followsdirectly,sincebothJ2(qe−b|w|/b)andY2(qe−b|w|/b)separatelysatisfytheBesselfunctionequationgivenasequation(19)withybeinggivenbyy=qe−b|w|/b;andthatthesolutionsatisfiesequation(90)followsfromequation(91).Forthissolutionwenotethatitistherequirementthatequation(92)obeyequation(90)(technicallytheIsraeljunctionconditioninthepresenceofthesource)whichfixestheoverallnormalizationoftheintegrandinequation(92),withnoneoftheαqorβqcoefficientsneedingtobeinfinite.Infactthesame

+

braneworldpropagatorasitsoverallnormalizationisfixedbythejunctionistrueoftheM4

−+

solutionofequation(88)andtheM4conditionofequation(86),withthesimilarityoftheM4

solutionofequation(92)essentiallyshowingcompleteinsensitivitytothenormalizabilityorlackthereofofbasismodes.

Inordertobeabletomakecontactwiththevariousbasesweusedinourconstruction

braneworld,weneedtomakespecificoflocalizedstepsinthedivergentwarpfactorM4

choicesfortheαqandβqcoefficientswhichappearinequation(92).TomakecontactwiththeconvergentJ2(qe−b|w|/b)modes,werecallthataTaylorseriesexpansionofJ1(q/b)aroundanyjizeroofJ1isoftheform

󰀑󰀍󰀍󰀐J(j)󰀍󰀌q󰀌q󰀌q

1i󰀂

−jiJ1(ji)=−ji−jiJ2(ji).−J2(ji)=−(93)J1(q/b)=bbjibThusonsettingαq=1,βq=0andrecallingthateachjizeroofJ1(ji)isalsoazeroof

J1(−ji),weseethatthepropagatorofequation(92)containsasetofisolatedpolesatthezerosofJ1(apoleatq=bj1whenp0ispositiveandapoleatq=−bj1whenp0isnegative),withap0planecontourintegrationyieldinganetpolecontributiontothepropagatoroftheform

󰀆¯·x¯󰀅d3peip−TTˆfi(|w|)fi(0)[e−iEit−eiEit],G(x,0,w,0;αq=1,βq=0,M4)=−i3(2π)2Ei

i

(94)

13804PDMannheimandISimbotin

where

󰀈1/2󰀇2b1/2J2(jie−b|w|)

¯+b2ji2,(95)fi(|w|)=,Ei=p

J2(ji)

andwherethesummationinequation(94)onlyneedsextendovertheji>0modes.Finally,recallingequation(32),namely

󰀆∞2

(m/b)J2−2b|w|2−b|w|

,(96)d|w|eJ2(me/b)=

2b0

weseethatthefi(|w|)basismodespreciselyobeyequations(1)and(5),withthepolestructure

−ˆTT(x,0,w,0;αq=1,βq=0,M−)nicelyrecoveringthebrane-worldpropagatorGoftheM44

2−b|w|

/b)sectorbasismodes.orthonormalityandclosurestructureofthenormalizableJ2(me

Inordertomakecontactwiththenon-normalizableM4modesector,weneedtotakeβqto

propagator.RecallingthatJ1(y),J2(y),Y1(y)andY2(y)respectivelybenon-zerointheM4

2

behaveasy/2,y/8,−2/πy+O(y)and−4/πy2−1/πneary=0,weseethatonceβqisnon-zero,theintegrand[αqJ2(qe−b|w|/b)+βqY2(qe−b|w|/b)]/q[αqJ1(q/b)+βqY1(q/b)]willbehaveas2be2b|w|/q2nearq2=0independentoftheactualvaluesofαqandβq,tothusgiverisetoamasslessgravitonpoletermcontributionoftheform

󰀆¯·x¯

d3peip−TT2b|w|−i|p|ti|p|tˆG(x,0,w,0;αq,βq=0,M4,graviton)=ibe[e−e].(97)(2π)32|p|

Non-normalizableastheM4brane-worldgravitonmightbe,aswesee,itnonethelessappearsinthepropagatorwithafiniteresidue16.

braneworlddivergentY2(qe−b|w|/b)modeswesetαq=0TomakecontactwiththeM4

ˆTT(x,0,w,0;αq,βq,M−),andwhileweimmediatelythenobtainpolesatthezerosofinG4

Y1(q/b),sincebothY2(qe−b|w|/b)andY1(q/b)havebranchpointsatq=0,wealsoobtainacutdiscontinuity,withthefullsingulartermevaluatingto[6]

󰀆¯·x¯

d3peip−TT2b|w|ˆG(x,0,w,0;αq=0,βq=0,M4)=ibe[e−i|p|t−ei|p|t]3(2π)2|p|

󰀆¯·x¯󰀅d3peip

˜˜−ifi(|w|)fi(0)[e−iEit−eiEit]3(2π)2Eii

󰀑󰀐󰀆󰀆¯·x¯ip

J2(me−b|w|/b)i3e−iEptiEpt

[e−e]dm1−2idp+

(2π)32EpY1(m/b)󰀁󰀂

−b|w|−b|w|

[Y1(m/b)J2(me/b)−J1(m/b)Y2(me/b)]

󰀉2󰀊×,(98)2π4J1(m/b)+Y1(mb)

where

b1/2Y2(yie−b|w|)˜,fi(|w|)=

Y2(yi)

󰀈1/2󰀇2

¯+b2yi2.Ei=p

(99)

Asweagainsee,despitethelackofnormalizabilityofY2(me−b|w|/b)modes,alltheterms

whichappearinequation(98)dosowithcoefficientswhicharenonethelessfinite.

DespitethefactthatthenegativetensionM4braneworldpossessesamasslessgravitonwhoseresidueisfinite,wenotethatitsresidueappearswithanoverallminussign(namelynegativesignature)comparedtotheotherwise

+braneworld(compareidenticalinstructurepositivesignaturemasslessgravitonresidueofthepositivetensionM4

thefirstformsgivenforhTTµν(x,|w|)giveninequations(88)and(92)whichdifferbyanoverallminussignoccasionedbytheoveralldifferenceinsignbetweentheright-handsidesofequations(87)and(91)).Suchnegativesignatureis

−−

thoughttoindicateaninstabilityoftheM4braneworld.Nonetheless,eventhoughtheM4braneworldmightthusnotbeofdirectphysicalinterest,itcanstillserveasausefulmathematicallaboratoryforexploringthecompletenesspropertiesofbasesbuiltoutofnon-normalizablemodes.16

Completenessofnon-normalizablemodes13805

Furtherexamplesofthisphenomenonmaybefoundintheotherdivergentwarpfactorbraneworldswehavebeenconsidering.However,unliketheexactpropagatorsolutionsofequations(88)and(92),fortheAdS4anddS4basedbraneworldssofarsuchpropagatorshaveonlybeenconstructedinloworder.Specifically,fortheAdS+4braneworldforinstancewherethebackgroundmetricofequation(6)takestheexplicitform

ds2=dw2+e2A(|w|)[dx2+e2Hx(dy2+dz2−dt2)]

(100)

withtheAdS+4warpfactorA(|w|)beinggiveninequation(9)andλbeingpositive,tolowestorderinHtheappropriateAdS+4propagatorisgivenas[6]

󰀇󰀈ˆTTx,x󰀂,w,0;αˆν,AdS+ˆν,βG4

󰀆∞󰀆∞

1023ˆν)=dpdpdpdp1p1Bν(tanh(b|w|−σ),αˆν,β32H(2π)−∞0

×eHx/2eHx/2e−ip

󰀂

0

(t−t󰀂)+ip2(y−y󰀂)+ip3(z−z󰀂)

Jτ(ke−Hx/H)Jτ(ke−Hx/H)(101)

󰀂

wherekisgivenbyk=[(p0)2−(p2)2−(p3)2]1/2,τandνaregivenbyτ=ν+1/2=

ˆν)isgivenbyˆν,β[9/4+k2/H2−(p1)2/H2]1/2,andthequantityBν(tanh(b|w|−σ),αˆν)ˆν,βBν(tanh(b|w|−σ),α

=

1

H(ν−1)(ν+2)

󰀁

αˆνPν2(tanh(b|w|−σ))

αˆνPν1(−tanhσ)

󰀂

2ˆ+βνQν(tanh(b|w|−σ))

.(102)

ˆνQ1+β(−tanhσ)ν

ˆν)obeysˆν,βAsconstructedthequantityBν(tanh(b|w|−σ),α

󰀑󰀐

dAdˆν)=δ(w),−2Bν(tanh(b|w|−σ),αδ(w)ˆν,β

d|w|d|w|

+

andhasasmallHlimitintotheanalogousM4integrand,namely

(103)

[αqJ2(qeb|w|/b)+βqY2(qeb|w|/b)]ˆ,ˆν,βν)→Bν(tanh(b|w|−σ),α

q[αqJ1(q/b)+βqY1(q/b)]

(104)

ˆν=(2/π)[−αqsin(νπ)+βqcos(νπ)].InthesmallHwhereαˆν=αqcos(νπ)+βqsin(νπ),β+ˆTT(x,x󰀂,w,0;αˆν,AdS4)obeysˆν,βlimitG

󰀂󰀁󰀏󰀎

󰀇󰀈dA2dA∂2−2A˜˜αTT󰀂+ˆˆGδ(w)+e∇∇x,x−4−4,w,0;αˆ,β,AdSανν4

∂w2d|w|d|w|

=eHxδ(x−x󰀂)δ(t−t󰀂)δ(y−y󰀂)δ(z−z󰀂)δ(w),

withthefluctuationhTTµν(x,|w|)

=

2

−2κ5

(105)

󰀆

󰀇󰀈TT󰀂󰀂

ˆTTx,x󰀂,w,0;αˆν,AdS+d4x󰀂e−HxGˆν,β4Sµν(x)

(106)

+

thusbeinganexactAdS+4braneworldsmallHsolutiontotheAdS4variantofequations(83)

TT󰀂

(x)sourceonthebrane.and(84)foranarbitrarySµν

22

AsregardspoletermsintheAdS+4brane-worldpropagator,since(ν−1)(ν+2)=q/H,

ˆν)generatesamasslessν=1gravitonthe(ν−1)(ν+2)terminBν(tanh(b|w|−σ),αˆν,β

poleinthepropagatorwhichisfoundtobeoftheform[6]

󰀇󰀈ˆTTx,x󰀂,w,0;αˆν,AdS+ˆν,β,gravitonG4

ˆS(x,x󰀂,m=0)be2AD

,(107)=

ˆ1)(H2/b2)+(1−H2/b2)1/2+(H2/b2)arccosh(b/H)][−(αˆ1/β

13806PDMannheimandISimbotin

ˆS(x,x󰀂,m)isthepureAdS4spacetimepropagatorwhichobeyswhereD󰀉2󰀇2󰀈󰀊2ˆS(x,x󰀂,m)=eHxδ4(x−x󰀂).∂x−H∂x+e−2Hx∂y+∂z−∂t2−2H2−m2D

(108)

Aswesee,despitethelackofnormalizabilityofthegravitonwavefunction,theresidueat

17

theAdS+ˆν=0in4masslessgravitonpoleisnonethelessfinite.Similarly,ifwesetαequation(101)wewillimmediatelygeneratethedivergentQ2ν(tanh(b|w|−σ))modesas

1

polesassociatedwiththezerosofQν(−tanhσ),withthesepoletermsalsopossessingfiniteresidues.Consequently,inthebraneworlddivergentmodesarefullycapableofappearingwithfiniteresiduesinpropagatorsandtheirlackofnormalizabilityshouldnotbetakenasbeing

+ˆTT(x,x󰀂,w,0;αq,βq,M+)propagatorGacriterionforexcludingthem.Infact,withtheM44

ofequation(88)beingcausalwhenwesetαq=1,βq=i[9,10](sothatitisthen

ˆν)ˆν,βbasedonoutgoingHankelfunctions),giventhesmallHlimitofBν(tanh(b|w|−σ),α

ˆTT(x,x󰀂,w,0;αˆν,AdS+ˆν,βexhibitedinequation(104),itwillbetheG4)propagatorwith

+iπνˆiπν

αˆν=e,βν=(2i/π)ewhichwillbetheAdS4analogueoftheoutgoingHankelfunction

+

brane-worldpropagator,withthisparticularAdS+basedcausalM44braneworldpropagator

+

explicitlybeingfoundtobecausal[6].Assuch,thecausalAdS4brane-worldpropagator

ˆν=(2i/π)eiπνpossessesanexplicitmasslessgravitonpolewhoseresiduewithαˆν=eiπν,β

isfinite,withtherethusbeingnojustificationforexcludingit18.Acknowledgments

TheauthorswouldliketothankDrAHGuth,DrDIKaiserandDrANayerifortheiractiveparticipationinthiswork,andfortheirmanyhelpfulcomments.References

[1]BenderCM,BrodyDCandJonesHF2003Am.J.Phys.711095

MannheimPDandDavidsonA2005Phys.Rev.A71042110[2]RandallLandSundrumR1999Phys.Rev.Lett.833370[3]RandallLandSundrumR1999Phys.Rev.Lett.834690

[4]DeWolfeO,FreedmanDZ,GubserSSandKarchA2000Phys.Rev.D62046008[5]KimHBandKimHD2000Phys.Rev.D61064003

[6]MannheimPD2005Brane-LocalizedGravity(Hackensack,NJ:WorldScientific)[7]KarchAandRandallL2001J.HighEnergyPhys.JHEP05(2001)008[8]GarrigaJandSasakiM2000Phys.Rev.D62043523

[9]GiddingsSB,KatzEandRandallL2000J.HighEnergyPhys.JHEP03(2000)023[10]MannheimPD2006CausalityinthebraneworldPreprinthep-th/0607041

UnlikethemasslessgravitonofthenegativetensionM4braneworld,themasslessgravitonofthepositivetension+

AdS4braneworldhasaresiduewithaperfectlyacceptablepositivesignature—asindeeditmustsinceitsresidue

+braneworldinthelimitincontinuesintothatofthepositivesignaturemasslessgravitonofthepositivetensionM4

whichHistakentozero.

18FromtheperspectiveofthepossiblephysicalviabilityoftheAdS+braneworld,theneedtoincludenon-normalizable

4

modesisactuallysomewhatunfortunatesincetheyleadtoagravitywhichisnotatalllocalizedtothebrane.ItwasthefactthatarestrictiontonormalizedmodesdidleadtogravitationalfluctuationmodeswhichwerelocalizedtothebranewhichpromptedtheAdS+4studyof[7].17

因篇幅问题不能全部显示,请点此查看更多更全内容