您的当前位置:首页正文

PCB布线规则详解

2023-09-21 来源:欧得旅游网


1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能

下降,有时甚至影响到产品的成功率。所以对电、 地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证

产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作

以表述: 众所周知的是在电源、地线之间加上去耦电容。 尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:

地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) 用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

2、数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。

3、信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会

给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。

4、大面积导体中连接腿的处理 在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就

电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易

造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,

可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。

5、布线中网络系统的作用 在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的

数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无

效的,如被元件腿的焊盘占用的或被安装孔、定门孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。 标准元器

件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸

(2.54 mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。

6、设计规则检查(DRC) 布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是

否符合印制板生产工艺的需求,一般检查有如下几个方面: 线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。 电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。 对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。 模拟电路和数字电路部分,是否有各自独立的地线。 后加在PCB中的图形(如图标、注标)是否会造成信号短路。 对一些不理想的线形进行修改。 在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。 多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。概述 本文档的目的在于说明使用PADS的印制板设计软件PowerPCB进行印制板设计的流程和一些注意事项,为一个工作组的设计人员提供设计规范,方便设计人员之间进行交流和相互检查。

2、设计流程 PCB的设计流程分为网表输入、规则设置、元器件布局、布线、检查、复查、输出六个步骤.

2.1 网表输入

网表输入有两种方法,一种是使用PowerLogic的OLE PowerPCB Connection功

能,选择Send Netlist,应用OLE功能,可以随时保持原理图和PCB图的一致,尽量减少出错的可能。

另一种方法是直接在PowerPCB中装载网表,选择File->Import,将原理图生成的网表输入进来。

2.2 规则设置 如果在原理图设计阶段就已经把PCB的设计规则设置好的话,就不用再进行设置这些规则了,因为输入网表时,设计规则已随网表输入进PowerPCB了。如果修改了设计规则,必须同步原理图,保证原理图和PCB的一致。除了设计规则和层定义外,还有一些规则需要设置,比如Pad Stacks,需要修改标准过孔的大小。如果设计者新建了一个焊盘或过孔,一定要加上Layer 25。

注意: PCB设计规则、层定义、过孔设置、CAM输出设置已经作成缺省启动文件,名称为Default.stp,网表输入进来以后,按照设计的实际情况,把电源网络和地分配给电源层和地层,并设置其它高级规则。在所有的规则都设置好以后,在PowerLogic中,使用OLE PowerPCB Connection的Rules From PCB功能,更新原理图中的规则设置,保证原理图和PCB图的规则一致。

2.3 元器件布局 网表输入以后,所有的元器件都会放在工作区的零点,重叠在一起,下一步的工作就是把这些元器件分开,按照

一些规则摆放整齐,即元器件布局。PowerPCB提供了两种方法,手工布局和自动布局。

2.3.1 手工布局

1. 工具印制板的结构尺寸画出板边(Board Outline)。

2. 将元器件分散(Disperse Components),元器件会排列在板边的周围。

3. 把元器件一个一个地移动、旋转,放到板边以内,按照一定的规则摆放整齐。

2.3.2 自动布局 PowerPCB提供了自动布局和自动的局部簇布局,但对大多数的设计来说,效果并不理想,不推荐使用。

2.3.3 注意事项

a. 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起

b. 数字器件和模拟器件要分开,尽量远离 c. 去耦电容尽量靠近器件的VCC

d. 放置器件时要考虑以后的焊接,不要太密集

e. 多使用软件提供的Array和Union功能,提高布局的效率

2.4 布线 布线的方式也有两种,手工布线和自动布线。

PowerPCB提供的手工布线功能十分强大,包括自动推挤、在线设计规则检查(DRC),自动布线由Specctra的布线引擎进行,通常这两种方法配合使用,常用的步骤是手工—自动—手工。

2.4.1 手工布线

1. 自动布线前,先用手工布一些重要的网络,比如高频时钟、主电源等,这些网络往往对走线距离、线宽、线间距、屏蔽等有特殊

的要求;另外一些特殊封装,如BGA,自动布线很难布得有规则,也要用手工布线。

2. 自动布线以后,还要用手工布线对PCB的走线进行调整。

2.4.2 自动布线 手工布线结束以后,剩下的

网络就交给自动布线器来自布。选择Tools->SPECCTRA,启动Specctra布线器的接口,设置好DO文件,按Continue就启动了Specctra

布线器自动布线,结束后如果布通率为100%,那么就可以进行手工调整布线了;如果不到100%,说明布局或手工布线有问题,需要调整布局或手工布线,直至全部布通为止。

2.4.3 注意事项

a. 电源线和地线尽量加粗

b. 去耦电容尽量与VCC直接连接

c. 设置Specctra的DO文件时,首先添加Protect all wires命令,保护手工布的线不被自动布线器重布

d. 如果有混合电源层,应该将该层定义为Split/mixed Plane,在布线之前将其分割,布完线之后,使用Pour Manager的Plane

Connect进行覆铜

e. 将所有的器件管脚设置为热焊盘方式,做法是将Filter设为Pins,选中所有的管脚,修改属性,在Thermal选项前打勾

f. 手动布线时把DRC选项打开,使用动态布线(Dynamic Route)

2.5 检查 检查的项目有间距(Clearance)、连接性(Connectivity)、高速规则(High Speed)和电源层(Plane),这些项目

可以选择Tools->Verify Design进行。如果设

置了高速规则,必须检查,否则可以跳过这一项。检查出错误,必须修改布局和布线。 注意:有些错误可以忽略,例如有些接

插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次。

2.6 复查 复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置;还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等。复查不合格,设计者要修改布局和布线,合格之后,复查者和设计者分别签字。

2.7 设计输出 PCB设计可以输出到打印机或输出光绘文件。打印机可以把PCB分层打印,便于设计者和复查者检查;光绘文件交给制板厂家,生产印制板。光绘文件的输出十分重要,关系到这次设计的成败,下面将着重说明输出光绘文件的注意事项。

a. 需要输出的层有布线层(包括顶层、底层、中间布线层)、电源层(包括VCC层和GND层)、丝印层(包括顶层丝印、底层丝印)、阻焊层(包括顶层阻焊和底层阻焊),另外还要生成钻孔文件(NC Drill) b. 如果电源层设置为Split/Mixed,那么在Add Document窗口的Document项选择Routing,并且每次输出光绘文件之前,都要对PCB图使用Pour Manager的Plane Connect进行覆铜;如果设置为CAM Plane,则选择Plane,在设置Layer项的时候,要把Layer25加上,在Layer25层中选择Pads和Viasc. 在设备设置窗口(按Device Setup),将Aperture的值改为199 d. 在设置每层的Layer时,将Board Outline选上

e. 设置丝印层的Layer时,不要选择Part Type,选择顶层(底层)和丝印层的Outline、Text、Line

f. 设置阻焊层的Layer时,选择过孔表示过孔上不加阻焊,不选过孔表示家阻焊,视具体情况确定

g. 生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改动

h. 所有光绘文件输出以后,用CAM350打开并打印,由设计者和复查者根据“PCB检查表”检查过孔(via)是多层PCB的重要组

成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。

简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;

二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区,见下图。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设

计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。

但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。

比如,现在正常的一块6层PCB板的厚度(通孔深度)为50Mil左右,所以PCB厂家能提供的钻孔直径最小只能达到8Mil。 二、过孔的寄生电容 过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2,过孔焊盘的直径为D1,PCB板的厚

度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于: C=1.41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF,

这部分电容引起的上升时间变化量为:

T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps 。从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,设计者还是要慎重考虑的。

三、过孔的寄生电感 同样,过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害

往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采

以计

出过孔

电感为

L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH 。如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。

四、高速PCB中的过孔设计 通过上面对过孔寄生特性的分析,我们可以看到,在高

速PCB设计中,看似简单的过 孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到:

1、从成本和信号质量两方面考虑,选择合理尺寸的过孔大小。比如对6-10层的内 存模块PCB设计来说,选用10/20Mil(钻孔/焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使用8/18Mil的过孔。目前技术条件下,很难使用更小尺寸的过孔了。对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗。

2、上面讨论的两个公式可以得出,使用较薄的PCB板有利于减小过孔的两种寄 生参数。

3、PCB板上的信号走线尽量不换层,也就是说尽量不要使用不必要的过孔。

4、电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好,因为它们会 导致电感的增加。同时电源和地的引线要尽可能粗,以减少阻抗。

5、在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以在PCB板上大量放置一些多余的接地过孔。当然,在设计时还需要灵活多变。前面讨论的过孔模型是每层均有焊盘的情况,也有的时候,我们可以将某些层的焊盘减小甚至去掉。

特别是在过孔密度非常大的情况下,可能会导致在铺铜层形成一个隔断回路的断槽,解决这样的问题除了移动过孔的位置,我们还可以考虑将过孔在该铺铜层的焊盘尺寸减小。

因篇幅问题不能全部显示,请点此查看更多更全内容