InternationalJournalofIndustrialOrganization
25(2007)1163–1178
www.elsevier.com/locate/econbase
Positionauctions☆HalR.Varian
UCBerkeley,UnitedStates
Received10January2006;receivedinrevisedform1September2006;accepted3October2006
Availableonline16November2006
Abstract
IanalyzetheequilibriaofagamebasedontheadauctionusedbyGoogleandYahoo.ThisauctioniscloselyrelatedtotheassignmentgamestudiedbyShapley–Shubik,Demange–Gale–SotomayerandRoth–Sotomayer.However,duetothespecialstructureofpreferences,theequilibriaoftheadauctioncanbecalculatedexplicitlyandsomeknownresultscanbesharpened.IprovidesomeempiricalevidencethattheNashequilibriaofthepositionauctiondescribethebasicpropertiesofthepricesobservedinGoogle'sadauctionreasonablyaccurately.
©2006ElsevierB.V.Allrightsreserved.
JELclassification:D44;M3
Keywords:Auctions;Onlineadvertising;Two-sidedmatching
Searchengineadvertisinghasbecomeabigbusiness,withthecombinedrevenueofindustryleadersYahooandGoogleexceeding$11billionin2005.Nearlyalloftheseadsaresoldviaanauctionmechanism.
Thebasicdesignoftheadauctionisfairlysimple.Anadvertiserchoosesasetofkeywordsthatarerelatedtotheproductitwishestosell.Eachadvertiserstatesabidforeachkeywordthatcanbeinterpretedastheamountthatitiswillingtopayifauserclicksonitsad.
Whenauser'ssearchquerymatchesakeyword,asetofadsisdisplayed.Theseadsarerankedbybids(orafunctionofbids)andtheadwiththehighestbidreceivesthebestposition;i.e.,thepositionthatismostlylikelytobeclickedonbytheuser.Iftheuserclicksonanad,theadvertiserischargedanamountthatdependsonthebidoftheadvertiserbelowitintheranking.
IreceivedmanyhelpfulcommentsfromMarcBerndl,JohnLamping,AlexanderNiske,AmitPatel,RobShillingsburg,DianeTang,andEricVeach.IamparticularlygratefultoMeredithGoldsmithforherclosereadingofthepaper,whichimprovedtheexpositionsignificantly.IalsothankJonathanRosenbergforencouragingmetopublishtheseresults.
E-mailaddress:hal@sims.berkeley.edu.0167-7187/$-seefrontmatter©2006ElsevierB.V.Allrightsreserved.doi:10.1016/j.ijindorg.2006.10.002
☆1164H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
Battelle(2005)describesthehistoryofsearchenginesandtheauctionadvertisingmodel.Mygoalinthispaperistopresentasimplegametheoreticmodeloftheadauctionandtestthemodelagainstthedata.
1.Amodelofpositionauctions
Considertheproblemofassigningagentsa=1,…,Atoslotss=1,…,Swhereagenta'svaluationforslotsisgivenbyuas=vaxs.Wenumbertheslotssothatx1Nx2N···NxS.Wealsosetxs=0forallsNSandassumethatthenumberofagentsisgreaterthanthenumberofslots.Thisproblemismotivatedbytheadauctionsmentionedabove.Intheseauctionstheagentsareadvertisersandtheslotsarepositionsonawebpage.Higherpositionsreceivemoreclicks,soxscanbeinterpretedastheclick-throughrateforslots.ThevaluevaN0canbeinterpretedastheexpectedprofitperclicksouas=vaxsindicatestheexpectedprofittoadvertiserafromappearinginslots.
Theslotsaresoldviaanauction.Eachagentbidsanamountba,withtheslotwiththebestclickthroughratebeingassignedtotheagentwiththehighestbid,thesecond-bestslottotheagentwiththesecondhighestbid,andsoon.Renumberingtheagentsifnecessary,letvsbethevalueperclickoftheagentassignedtoslots.Thepriceagentsfacesisthebidoftheagentimmediatelybelowhim,sops=bs+1.Hencethenetprofitthatagentacanexpecttomakeifheacquiresslotsis(va−ps)xs=(va−bs+1)xs.
Itturnsoutthatthesethatpositionauctionshaveanicemathematicalstructureandastrongrelationshiptoexistingliteratureontwo-sidedmatchingmodels(RothandSotomayor,1990).Edelmanetal.(2005)independentlyexaminetheseauctionsanddeveloprelatedresultswhichIdescribebelow.
2.Nashequilibriumofpositionauction
ConsiderTable1whichdepictsthepositions,values,bidsandpaymentassociatedwithanauctionwithS=4availableslots.WeknowthatxsNxs+1byassumptionandthatbsNbs+1bytherulesoftheauction.
Ifagent3wantedtomoveupbyoneposition,itwouldhavetobidatleastb2,thebidofagent2.Butifagent2wantedtomovedownbyonepositionitwouldonlyhavebidatleastb4=p3,thebidofagent4.Weseethattomovetoahigherslotyouhavetobeatthebidthattheagentwhocurrentlyoccupiesthatslotismaking;tomovetoalowerslotyouonlyhavetobeatthepricethattheagentwhocurrentlyoccupiesthatslotispaying.
Formally,wemodelthepositionauctionasasimultaneousmovegamewithcompleteinformation.Eachagentasimultaneouslychoosesabidba.Thebidsarethenorderedandthepriceeachagentmustpayperclickisdeterminedbythebidoftheagentbelowhimintheranking.
Table1
BiddingforpositionPosition12345
Valuev1v2v3v4v5Bidb1b2b3b4b5Pricep1=b2p2=b3p3=b4p4=b50
CTRx1x2x3x40
H.R.Varian/Int.J.Ind.Organ.25(2007)1163–11781165
Inequilibrium,eachagentshouldpreferhiscurrentslottoanyotherslot,whichmotivatesthefollowingdefinition.
Definition1.ANashequilibriumsetofprices(NE)satisfies
ðvs−psÞxszðvs−ptÞxtfortNsðvs−psÞxszðvs−pt−1Þxtfortbswherept=bt+1.
Notethatifanagentchangeshisbidslightlyitnormallywon'taffecthispositionorpayment,sotherewilltypicallybearangeofbidsandpricesthatsatisfytheseinequalities.Alsonotethattheseinequalitiesarelinearintheprices.Hence,given(vs)and(xs)wecanuseasimplelinearprogramtosolveforthemaximumandminimumequilibriumrevenueattainablebytheauction.TheanalysisofthepositionauctionismuchsimplifiedbyexaminingaparticularsubsetofNashequilibria.
Definition2.AsymmetricNashequilibriumsetofprices(SNE)satisfies
ðvs−psÞxszðvs−ptÞxtforalltands;Equivalently,
vsðxs−xtÞzpsxs−ptxtforalltands:
NotethattheinequalitiescharacterizinganSNEarethesameastheinequalitiescharacterizinganNEfortNs.
Forgettingabouttheauctionforamoment,supposethatthepricesforeachslotweregivenexogenouslyandagentscouldpurchaseslotsattheseprices.NotethattheSNEpricescompriseacompetitiveequilibriuminthesensethateachagentpreferstopurchasetheslotitisinratherthansomeotherslot.TheSNEpricesthusprovidesupportingpricesfortheclassicassignmentproblem,asdescribedinGale(1960),forexample.InSection4Idescribetherelationshipbetweentheassignmentproblemandthepositionauctioninmoredetail.
Ingeneral,thesesupportingpricescanonlybecalculatedusingalinearprogramorrelatedalgorithm.However,Iwillshowinaseriesofshortargumentsthatinthisspecialcase,thepricescanbecomputedexplicitlyviaasimplerecursiveformula.Fact1.Non-negativesurplusInanSNEvs≥ps.
Proof.UsingtheinequalitiesdefininganSNE,
ðvs−psÞxszðvSþ1−pSþ1ÞxSþ1¼0;sincexS+1=0.
□
ð1Þð2Þ
Fact2.MonotonevaluesInanSNE,vs−1≥vsforalls.
1166H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
Proof.BydefinitionofSNEwehave
vtðxt−xsÞzptxt−psxsvsðxs−xtÞzpsxs−ptxt:
Addingthesetwoinequalitiesgivesusðvt−vsÞðxt−xsÞz0;
whichshowsthat(vt)and(xt)mustbeorderedthesameway.
□
ð3Þð4Þ
Notethatsinceagentswithhighervaluesareassignedtobetterslots,anSNEisanefficientallocation.
Fact3.Monotoneprices
InanSNE,ps−1xs−1Npsxsandps−1Npsforalls.IfvsNpsthenps−1Nps.Proof.BydefinitionofSNEwehave
ðvs−psÞxszðvs−ps−1Þxs−1;whichcanberearrangedtogive
ps−1xs−1zpsxsþvsðxs−1−xsÞNpsxs:Thisprovesthefirstpart.
Toprovethesecondpartwewrite
ps−1xs−1zpsxsþvsðxs−1−xsÞzpsxsþpsðxs−1−xsÞ¼psxs−1:
Cancelingxs−1weseethatps−1zps.IfvsNps,thesecondinequalityisstrict,whichprovesthelastpartofthefact.□Fact4.NE⊃SNE
IfasetofpricesisanSNEitisanNE.Proof.Sincept−1zpt,
ðvs−psÞxszðvs−ptÞxtzðvs−pt−1Þxt:forallsandt.□
ThereasonthatthesetofsymmetricNashequilibriaisinterestingisthatitisonlynecessarytoverifytheinequalitiesforonestepupordowninordertoverifythattheentiresetofinequalitiesissatisfied.
Fact5.Onestepsolution
IfasetofbidssatisfiesthesymmetricNashequilibriainequalitiesfors+1ands−1,thenitsatisfiestheseinequalitiesforalls.
H.R.Varian/Int.J.Ind.Organ.25(2007)1163–11781167
Proof.Igiveaproofbyexample.SupposethattheSNErelationsholdforslots1and2andforslots2and3;weneedtoshowitholdsfor1and3.Writingouttheconditionandusingthefactthatv1≥v2,
v1ðx1−x2Þzp1x1−p2x2Yv1ðx1−x2Þzp1x1−p2x2v2ðx2−x3Þzp2x2−p3x3Yv1ðx2−x3Þzp2x2−p3x3Addinguptheleftandrightcolumns,v1ðx1−x3Þzp1x1−p3x3;
aswastobeshown.Theargumentgoingtheotherdirectionissimilar.
□
Thesefactsallowustoprovideanexplicitcharacterizationofequilibriumpricesandbids.Sincetheagentinpositionsdoesnotwanttomovedownoneslot:
ðvs−psÞxszðvs−psþ1Þxsþ1
Sincetheagentinpositions+1doesnotwanttomoveuponeslot:ðvsþ1−psþ1Þxsþ1zðvsþ1−psÞxs:
Puttingthesetwoinequalitiestogetherwesee:
vsðxs−xsþ1Þþpsþ1xsþ1zpsxszvsþ1ðxs−xsþ1Þþpsþ1xsþ1:Recallingthatps=bs+1wecanalsowritetheseinequalitiesas:vs−1ðxs−1−xsÞþbsþ1xszbsxs−1zvsðxs−1−xsÞþbsþ1xs:
Definingαs=xs/xs−1b1,wehaveyetanotherwaytowritetheinequalities:vs−1ð1−asÞþbsþ1aszbszvsð1−asÞþbsþ1as:
ð7Þð6Þð5Þ
Theequivalentconditions(5)–(7)showthatinequilibriumeachagent'sbidisboundedaboveandbelowbyaconvexcombinationofthebidoftheagentbelowhimandavalue—eitherhisownvalueorthevalueoftheagentimmediatelyabovehim.The(purestrategy)Nashequilibriacanbefoundsimplybyrecursivelychoosingasequenceofbidsthatsatisfytheseinequalities.Wecanexaminetheboundarycasesbychoosingtheupperandlowerboundsininequalities(6).Therecursionsthenbecome
bUsxs−1¼vs−1ðxs−1−xsÞþbsþ1xsbLsxs−1¼vsðxs−1−xsÞþbsþ1xsThesolutiontotheserecursionsare:
X
U
bsxs−1¼vt−1ðxt−1−xtÞ:bLsxs−1¼
X
tzstzs
ð8Þ
ð9Þ
ð10Þð11Þ
vtðxt−1−xtÞ:
1168H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
ThestartingvaluesfortherecursionsfollowfromthefactthatthereareonlySpositions,sothatxs=0forsNS.Writingoutthelowerboundonthebidfors=S+1,wehave
bLSþ1xS
¼vSþ1ðxS−xSþ1Þ
¼vSþ1xS
sothatitisoptimalforthefirstexcludedbiddertobidhisvalue.ThisresulthasthesameargumentasintheusualVickreyauction.Ifyouareexcluded,thenbiddinglowerthanyourvalueispointless,butifyoudohappentobeshown(e.g.,becauseoneofthehigherbiddersdropsout)youwillmakeaprofit.2.1.Logicofthebounds
Ofcourse,anybidintherangedescribedbyEqs.(5)–(7)isanSNEandhenceanNEbid,butperhapstherearereasonswhybiddingatoneendoftheupperorlowerboundsmightbeparticularlyattractivetothebidder.
SupposethatIaminpositionsmakingaprofitof(vs−bs+1)xs.InNashequilibriummybidisoptimalgivenmybeliefsaboutthebidsoftheotheragents,butIcanvarymybidinrangespecifiedbyEq.(6)withoutchangingmypaymentsorposition.
WhatisthehighestbidIcansetsothatifIhappentoexceedthebidoftheagentabovemeandImoveupbyoneslot,IamsuretomakeatmakeatleastasmuchprofitasImakenow?
TheworstcaseiswhereIjustbeattheadvertiserabovemebyatinyamountandenduppayingmybid,bs,minusatinyamount.Hencethebreakevencasesatisfiestheequationworstcaseprofitmovingup
ðvs−b⁎sÞxs−1⁎givesusSolvingforbsb⁎sxs−1¼vsðxs−1−xsÞþbsþ1xs;
whichisthelower-boundrecursion,Eq.(9).
Alternatively,wecanthinkdefensively.IfIsetmybidtoohigh,Iwillsqueezetheprofitoftheplayeraheadofmesomuchthathemightprefertomovedowntomyposition.Thehighestbreakevenbidthatwouldnotinducetheagentabovemetomovedownis
hisprofitnow¼howmuchhewouldmakeinmypositionðvs−1−b⁎sÞxs−1¼ðvs−1−bsþ1Þxs:⁎givesusSolvingforbsb⁎sxs−1¼vs−1ðxs−1−xsÞþbsþ1xs;
whichistheupper-boundrecursion,Eq.(8).
Asamatterofpractice,itseemstomethatthefirstargumentiscompelling.Eventhoughanybidintherange(5)isaNashbid,onemightarguethatsettingthatbidsothatImakeaprofitifImoveupintherankingisareasonablestrategy.
ð12Þð13Þ
¼profitnow¼ðvs−bsþ1Þxs:
H.R.Varian/Int.J.Ind.Organ.25(2007)1163–11781169
3.NErevenueandSNErevenue
SummingEqs.(10)and(11)overs=1,…SgivesusupperandlowerboundsontotalrevenueinanSNE.IfthenumberofslotsS=3,forexample,thelowerandupperboundsaregivenby
RL¼v2ðx1−x2Þþ2v3ðx2−x3Þþ3v4x3RU¼v1ðx1−x2Þþ2v2ðx2−x3Þþ3v3x3:
HowdotheseboundsrelatetotheboundsfortheNEcalculatedbythelinearprogrammingproblemsalludedtoearlier?
SincethesetofNEcontainsthesetofSNEs,onemightspeculatethatthemaximumandminimumrevenuesarelargerandsmaller,respectively,thantheSNEmaximumandminimumrevenue.Thisishalfright:itturnsoutthattheupperboundfortheSNErevenueisthesameasthemaximumrevenuefortheNE,whilethelowerboundonrevenuefromtheNEisgenerallylessthantherevenueboundfortheSNE.
Fact6.ThemaximumrevenueNEyieldsthesamerevenueastheupperrecursivesolutiontotheSNE.
NProof.Let(ps)bethepricesassociatedwiththemaximumrevenueNashequilibriumandletU(ps)bethepricesthatsolvetheupperrecursionfortheSNE.SinceNE⊃SNE,therevenue
NUassociatedwith(ps)mustbeatleastaslargeastherevenueassociatedwith(ps).FromthedefinitionofanNE,Eq.(1),wehave:
N
pNsxsVpsþ1xsþ1þvsðxs−xsþ1Þ:
Fromthedefinitionoftheupper-boundrecursion,Eq.(8),wehave:
UpUsxs¼psþ1xsþ1þvsðxs−xsþ1Þ:
Therecursionsstartats=S.SincexS+1=0wehave
UpNSVvS¼pS:
UN≥psforalls.HencetheItfollowsbyinspectingtherecursionsimmediatelyabovethatpsmaximumrevenuefromtheSNEisatleastaslargeasthemaximumrevenuefromtheNE,implyingthattherevenuemustbeequal.□
ItiseasytoconstructexampleswheretheminimumrevenueNEhaslessrevenuethanthesolutiontothelowerrecursionfortheSNE;thisisnotsurprisingsincethesetofinequalitiesdefiningtheNEstrictlycontainsthesetofinequalitiesdefiningtheSNE.Sowehavethegeneralrelations:
maximumrevenueNE¼valueofupperrecursionofSNE
zvalueoflowerrecursionofSNEzminrevenueNE
withtheinequalitiesbeingstrictexceptindegeneratecases.4.Previousliterature
IhavealreadymentionedtherecentindependentanalysisofEdelmanetal.(2005).Theyintroduceaconcepttheycall“locallyenvy-free”equilibriawhichrequiresthateachplayer“cannotimprovehispayoffbyexchangingbidswiththeplayerrankedonepositionabovehim.”Thisyieldsthesamebidsas
1170H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
thelowerboundoftheSNEsdescribedinthispaper.Theyalsointroducetheinterestingconceptofa“GeneralizedEnglishAuction”andshowthattheuniqueperfectequilibriumofthisgameisthesameasthelocallyenvy-freeoutcome.
Thereisalsoamucholderliteraturethatiscloselyrelatedtothepositionauctionproblem.ShapleyandShubik(1972)describeanassignmentgameinwhichagentsareassignedobjectswithatmostoneobjectbeingassignedtoanagent.Mathematically,letagenta'sevaluationofobjectsbegivenbyuas.Theassignmentproblemasksfortheassignmentofobjectstoagentsthatmaximizesvalue.Thisproblemcanbesolvedbylinearprogrammingorbyotherspecializedalgorithms.Itturnsoutthatanoptimalassignmentcanbedecentralizedbymeansofpricemechanism.Thatis,atanoptimalassignmenttherewillexistasetofnumbers(pa),interpretableasthepriceoftheobjectassignedtoagenta,suchthat:
uas−pazuas−pb
forallaandb:
Henceattheprices(pa)eachagentwouldweaklyprefertheobjectassignedtohimoveranyotherobject.
ComparingthistothedefinitionofthesymmetricNashinequalities,weseethatthedefinitionsarethesamewithuas=vaxsandpa=ba+1xs.Hence,thepositionauctiongamewehavedescribedissimplyacompetitiveequilibriumofanassignmentgamethathasaspecialstructureforutility.However,thespecialstructureisparticularlynaturalinthiscontext.Inparticular,wecanexplicitlysolveforthelargestandsmallestcompetitiveequilibriumduetothespecialstructureofuas.Demangeetal.(1986)constructanauctionthatdeterminesacompetitiveequilibrium.However,theauctiontheyconstructisquitedifferentfromthepositionauction.RothandSotomayor(1990),Chapter8,containsaunifiedtreatmentoftheseresults.Severalpapershavedevelopedauctionsthatyieldcompetitiveequilibriafortheassignmentgame;seeBikhchandaniandOstroy(2006)forarecentsurvey.5.Incentives
Wehaveseenthattheoptimalbidsinthepositionauctionwillingeneraldependonthebidsmadebyotheragents.Onemightwellaskifthereisawaytofindanotherauctionstructureforwhichagenta'soptimalbiddependsonlyonitsvalue.Isitpossibletofindanauctionformthathasadominantstrategyequilibrium?DemangeandGale(1985)showtheansweris“yes,”usingavariationontheHungarianalgorithmfortheassignmentproblem.
Wecanalsoapplythewell-knownVickrey–Clarke–Grovesmechanismtothisproblem.Leonard(1983)describesthisforthegeneralcase,buttheVCGmechanismtakesaparticularlysimpleformforthespecialcaseweareconsideringhere.
LetusrecallthebasicstructureoftheVCGmechanism.Supposeacentralauthorityisgoingtochoosesomeoutcomezsoastomaximizethesumofthereportedutilitiesofagentsa=1,…,A.Letagenta'strueutilityfunctionbedenotedbyua(·)anditsreportedutilityfunctionbyra(·).Inordertoalignincentives,thecenterannouncesitwillpayeachagentthesumoftheutilitiesreportedbytheotheragentsattheutility-maximizingoutcome.Thusthecenterannouncesitisgoingtomaximize
X
raðzÞþrbðzÞ
bpa
whileagentacaresabout
X
uaðzÞþrbðzÞ
bpa
H.R.Varian/Int.J.Ind.Organ.25(2007)1163–11781171
Itiseasytoseethatinordertomaximizeitsownpayoff,agentawillwanttoreportitstrueutilityfunction,thatis,setra(·)=ua(·),sincethisensuresthatthecenteroptimizesexactlywhatagentawantsittomaximize.
Wecanreducethesizeofthesidepaymentsbysubtractinganamountfromagentathatdoesnotdependonitsreport.Aconvenientchoiceinthisrespectisthemaximizedsumofreportedutilitiesomittingagenta'sreport.Hencethefinalpayofftoagentabecomes
uaðzÞþ
X
bpa
rbðzÞ−max
y
X
bpa
rbðyÞ:
Thepaymentmadebyagentacanbeinterpretedastheharmthatitspresenceimposesontheotheragents:thatisthedifferencebetweenwhattheygetwhenagentaispresentandwhattheywouldgetifagentawereabsent.
Inthecontextofassigningagentstopositions,ifagents−1isomitted,eachagentbelowagents−1willmoveuponepositionwhileagentsaboves−1areunaffected.Hencethepaymentthatagents−1mustmakeis
VCGpaymentofagents−1¼
X
tzs
rtðxt−1−xtÞ;ð14Þ
wherertisthereportedvalueofagentt.InthedominantstrategyVCGequilibrium,eachagenttwillannouncert=vt,so
X
equilibriumVCGpaymentofagents−1¼vtðxt−1−xtÞ:ð15Þ
tzs
Comparingthistoexpression(11)thisiseasilyseentobethesameasthelowerboundforthesymmetricNashequilibria.
Thisrelationshipistrueingeneral,evenforarbitraryuas.DemangeandGale(1985)showthatthebest(i.e.,lowestcost)equilibriumforthebuyersinthecompetitiveequilibriumfortheassignmentproblemisthatgivenbytheVCGmechanism.SeeRothandSotomayor(1990)foradetaileddevelopmentofthistheory,andBikhchandaniandOstroy(2006)forarecentsurveyofrelatedresults.Edelmanetal.(2005)alsorecognizethecloseconnectionbetweentheVCGoutcomeandtheequilibriumconceptthattheyuse(locallyenvy-freeequilibria).
6.Boundsonvalues
ReturningtothesymmetricNashequilibriumanalysis,itispossibletoderiveusefulboundsontheunobservedvaluesoftheagentsbyusingtheobservedequilibriumprices.
Letps=bs+1betheequilibriumpricepaidbyagentsinaparticularsymmetricNash(orcompetitive)equilibrium.Thenwemusthave:
ðvs−psÞxszðvs−ptÞxt:Rearrangingthiswehave
vsðxs−xtÞzpsxs−ptxt:
1172H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
Dividingbyxs−xtandrememberingthatthesenseoftheinequalityisreversedwhenxsbxt,wehave
min
tNs
psxs−ptxtpsxs−ptxt
zvszmax:
tbsxs−xtxs−xt
Furthermore,weknowfromFact5thatthemaxandtheminareattainedattheneighboring
positions,sowecanwrite
ps−1xs−1−psxspsxs−psþ1xsþ1
zvsz
xs−1−xsxs−xsþ1
Theseinequalitieshaveaniceinterpretation:theratiosaresimplytheincrementalcostofmoving
upordownoneposition.
Wecanrecursivelyapplytheseinequalitiestowrite
v1zv2z
p1x1−p2x2
z
x1−x2p2x2−p3x3
z
x2−x3
ð16Þð17Þð18Þ
v
vSzpS
Thisshowsthattheincrementalcostsmustdecreaseaswemovetolowerpositions.Thisobservationhasthreeimportantimplications.
1.TheinequalitiesgiveanobservablenecessaryconditionforatheexistenceofapurestrategyNashequilibrium,namely,thateachoftheintervalsbenon-empty.Theconditionsarealsosufficientinthatiftheintervalsarenon-empty,wecanfindasetofvaluesthatareconsistentwithequilibrium.2.Theinequalitiesalsoyieldsimplebiddingrulefortheagents:ifyourvalueexceedsthemarginalcostofmovingupaposition,thenbidhigher,stoppingwhenthisnolongeristrue.3.FinallytheinequalitiesmotivatethefollowingintuitivecharacterizationofSNE:themarginalcostofaclickmustincreaseasyoumovetohigherpositions.Why?Becauseifiteverdecreased,therewouldbeanadvertiserwhopassedupcheapclicksinordertopurchaseexpensiveones.WecanalsodothesamecalculationsfortheNEinequalitieswhichyields:min
tNs
psxs−pt−1xtpsxs−ptxt
zvszmax:
tbsxs−xtxs−xt
ð19Þ
NotethattheupperboundsfortheNE(fortNs)arelooserthanfortheSNEandthattheynow
involvetheentiresetofbids,notjusttheneighboringbids.7.Geometricinterpretation
Fig.1showstheclickthroughratesxsonthehorizontalaxesandSNEexpenditurepsxs=bs+1xsontheverticalaxis.Werefertothisgraphastheexpenditureprofile.Theslopeofthelinesegmentsconnectingeachvertexarethemarginalcostsdescribedintheprevioussectionwhich
H.R.Varian/Int.J.Ind.Organ.25(2007)1163–11781173
Fig.1.ExpenditureprofileforSNE.
wehaveshownmustboundtheagents'values.Accordingtotheabovediscussion,iftheobservedchoicesareanSNE,thisgraphmustbeanincreasing,convexfunction.
Theprofitaccruingtoagentsisπs=vsxs−psxs.Hencetheiso-profitlinesaregivenbypsxs=vsxs−πs,whicharestraightlineswithslopevsandverticalinterceptof−πs.Aprofit-maximizingbidderwantstochoosethatpositionwhichhasthelowestassociatedprofit,asshowninFig.1.Therangeofvaluesassociatedwithequilibriumaresimplytherangeofslopesofthesupportinghyperplanesateachpoint.
ThisdiagramalsocanbeusedtoillustratetheconstructionoftheSNEusingtherecursivesolutionoutlinedearlier.Supposethatthereare3slotsandwearegivenfourvalues.Sinceweknowthatp3=v4fromtheboundaryconditionforthelowerrecursion,wedrawalinewithslopev4connectingthepoints(0,0)and(x3,v4x3).Nextdrawalinewithslopeofv3startingat(x3,v4x3).Thevalueofthislineatx2willbev4x3+v3(x2−x3),whichisexactlythelowerrecursion.Continuinginthiswaytracesouttheequilibriumexpenditureprofile.
WecanalsoillustratetheNEboundsusingthesamesortofdiagram.ThelowerboundsonFig.2showstheSNEbounds,alongwiththeNEboundsfrominequalities(19).FortheNE,thelowerboundsarethesame,whiletheupperboundsarelooser(steeper)thantheSNE.
Fig.2.ExpenditureprofileforNEandSNE.
1174H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
8.Applicationstoadauctions
Upuntilnowwehavedescribedtheabstractstrategicstructureofthepositionauction.InordertoapplythistotheactualadauctionusedbyGoogle,wehavetoaddsomerefinements.
Googleactuallyrankstheadsbytheproductofameasurementofadqualityandadvertiserbid,ratherthanjustthebidalone.1Weassumethattheobservedclickthroughrateforadvertiserainpositionsistheproductofthis“qualityeffect”es,anda“positioneffect,”xs.Lettingzsbeadvertisers'sobservedclickthroughrate,wewritezs=esxs.
Advertisersareorderedbyesbsandeachadvertiserpaystheminimumamountthatisnecessarytoretainhisposition.Letqstbetheamountthatadvertiserswouldneedtopaytobeinpositiont.Byconstructionwehave
qstes¼btþ1etþ1:Solvingforqstwehave
qst¼btþ1etþ1=es:
ð20Þ
Nashequilibriumrequiresthateachagentpreferhispositiontoanyotherposition,recognizingthatthecostandclickthroughrateoftheotherpositiondependsonhisadquality:
ðvs−qssÞesxszðvs−qstÞesxt:
SubstitutingEq.(20)intothisexpressionandsimplifyingwehave
ðesvs−bsþ1esþ1Þxszðesvs−btþ1etþ1Þxt:Lettingps=bs+1es+1andpt=bt+1et+1givesus
ðesvs−psÞxszðesvs−ptÞxt:
WecannowapplythesamelogicusedinEq.(16)–(18)togiveus
e1v1ze2v2zv
p1x1−p2x2
z
x1−x2p2x2−p3x3
z
x2−x3
ð21Þð22Þð23Þ
eSvSzpS:
ThesearethetestableinequalitiesimpliedbythesymmetricNashequilibriummodel.
Finally,wealsohavetomentionthecaseof“non-fullysoldpages”whichareauctionswherethenumberofadsdisplayedontheright-handsideisfewerthan8.Inthiscase,thebottomadonthepagepaysareservepricewhichiscurrentlysetat5cents.
1Seehttp://services.google.com/awp/en_us/breeze/5310/index.html.
H.R.Varian/Int.J.Ind.Organ.25(2007)1163–11781175
9.Informationrequirements
WehavefocusedonthesetofNashequilibriaofthepositionauctiongame.Thisis,ofcourse,afull-informationsolutionconcept,andonemightaskhowlikelyitisthatadvertisersknowwhattheyneedtoknowtoimplementafullinformationequilibrium.
Ofcourse,onecouldhardlyexpectadvertiserstobecompletelyinformedaboutallrelevantvariables.However,itisveryeasytoexperimentwithbiddingstrategiesinreal-worldadauctions.Googlereportsclickandimpressiondataonanhour-by-hourbasisandafewdaysofexperimentationcanyieldprettygoodestimatesofthenumberofclicksreceivedfordifferentbids.Furthermore,Googleitselfoffersa“TrafficEstimator”thatprovidesanestimateofthenumberofclicksperdayandthecostperdayassociatedwiththeadvertiser'schoiceofkeywords.Finally,third-partycompaniesknownas“SearchEngineManagers(SEMs)”offeravarietyofservicesrelatedtomanagingbids.Theavailabilityofsuchtoolsandservices,alongwiththeeaseofexperimentation,suggestthatthefull-informationassumptionisareasonablefirstapproximation.Aswewillseebelow,theNashequilibriummodelseemstofittheobservedchoiceswell.10.Empiricalanalysis
Givenasetofpositioneffects,qualityeffects,andbidswecanplotxtversusexpenditurebtxtandseeifthisexpenditureprofileisincreasingandconvex.Itturnsoutthatthisoftenistrue.Ifthegraphisnotincreasingandconvex,wecanaskforaperturbationofthedatathatdoesexhibittheseproperties.
Thequestionis,whattoperturb?Thenaturalvariabletoperturbistheadquality,es,sincethisisthemostdifficultvariablefortheadvertiserstoobserveandthushasthemostassociateduncertainty.Let(dses)bethevalueoftheperturbedadqualitywhere(ds)isasetofmultipliersindicatinghow
Fig.3.Examplesofdataandfits.
1176H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
mucheachadqualityneedstobeperturbedtosatisfytheNashinequalities(21)–(23).Sincethepricespsarelinearfunctionsofes,wecanalsothinkoftheperturbationsasapplyingtotheprices.Thismodelmotivatesthefollowingquadraticprogrammingproblem:choosetheperturbations(ds)tobeascloseaspossibleto1(intermsofsquarederror)constrainedbytherequirementthattheSNEinequalitiesgiveninEqs.(21)–(23)aresatisfied.Explicitly,thequadraticprogrammingproblemis
Xminðds−1Þ2
d
s
suchthat
ds−1ps−1xs−1−dspsxsdspsxs−dsþ1psþ1xsþ1
z:
ðxs−1−xsÞðxs−xsþ1ÞSincetheconstraintsarelinearin(ds),thisisasimplequadraticprogrammingproblemwhichcanbe
easilysolvedbystandardmethods.Thisminimalperturbationcalculationcanbegivenastatisticalinterpretation;seeVarian(1985).However,wedonotpursuethedetailsofthisinterpretationhere.Fig.3showssomeexamplesofexpenditureprofilesusingtheactualdataalongwiththebestfittingincreasing,convexrelationship.(Thenumericvaluesontheaxeshavebeenremovedsincethisanalysisisbasedonproprietarydata.)
Itcanbeseenthatthegeneralshapeoftheexpenditureprofiletendstobeincreasingandconvexasthetheorypredicts.Furthermore,itoftenratherflatatleastinpositions3–8.Oneexplanationfortheincreasedexpenditureonpositions1and2ontheright-handsideisthatGooglewillpromoteadsintheseslotstothetop-of-pagepositionundercertainconditions.Thusadvertisersmaywanttobidextratogettoright-handsidepositions1and2,hopingtobepromotedtoatopspot.
Iexaminedthebidsforarandomsampleof2425auctionsinvolvingatleast5adseachonaparticularday.SolvingthequadraticprogrammingproblemsyieldsasetofminimalperturbationsforeachauctionrequiredtomakethatauctionsatisfytheSNEinequalities.ForeachauctionI
Sdefinethemeanabsolutiondeviationtobe∑s=1|ds−1|/S,whereSisthenumberofadvertisersintheauction.
Fig.4depictsahistogramofmeanabsolutedeviationsnecessarytosatisfytheSNEinequalities;asitcanbeseenthedeviationstendtobequitesmall,withtheaverageabsolutedeviationoftheperturbationsbeing5.8%andthemedianbeing4.8%.Veryfewofthemeanabsolutedeviationsarelargerthan10%.IconcludethatrelativelysmallperturbationsarerequiredtomaketheobservationsconsistentwiththeSNEmodels.SincetheNEinequalitiesareweakerthantheSNEinequalities,therequiredperturbationforconsistencywithNashequilibriumwouldbeevensmaller.
Fig.4.Distributionofmeanabsolutedeviations.
H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
Table2
BoundsonvaluesPsn12345678
RawLB1.191.290.600.721.680.231.320.05
RawUB∞2.261.660.301.790.840.831.63
PerturbedLB1.191.151.190.601.470.341.080.05
PerturbedUB∞2.261.480.611.490.741.191.33
1177
Price0.480.600.480.230.400.070.240.21
WecanusetheprocedureforestimatingtheboundsonvdescribedinSection6todetermineempiricallytherelationshipbetweenthebidsandthevalues.Forexample,Table2showsthe“raw”upperandlowerboundsonvaluesforaparticularkeywordcalculatedbyusingtheobservedincrementalcostalongwiththeupperandlowerboundsonvaluecalculatedusingtheperturbedvaluesfromthequadraticprogram.Thelastcolumnisthepriceoftheclick.Inthisexample,thelowerboundssometimesexceedtheupperboundsfortherawdata,buttheperturbeddatasatisfytheboundsbyconstruction.Thepricesarenotnecessarilymonotoneduetothequalityadjustmentbutthepricetimesqualityadjustment(notshown)isalwaysmonotone.Ascanbeseenfromthetable,theestimatedvalueofaclicktothesebiddersappearstobesomewherearoundadollarandtheadvertisersarepayingaround50centsaclick.AppendixA.Bayes–Nashequilibrium
IhavearguedthatthefullinformationassumptionthatunderliesNashequilibriumisnotimplausibleinthisinstitutionalsetting.However,itisalsoofinteresttoexaminetheBayes–Nashequilibria,whichwouldbeappropriateinagamewithsubstantiallylessinformation.
Asitturnsouttheanalysisisastraightforwardvariationoftheclassicalanalysisofasimpleauction.Toseethis,letusfirstreviewtheclassicalanalysis.Letvbethevalueofaparticularbidder,P(v)theprobabilitythathewinstheauction,andp(v)hisexpectedpayment.Thebidder'sobjectiveistomaximizeexpectedsurplusS(v)=vP(v)−p(v).
Inthepositionauctioncontext,weletP(1)(v)betheprobabilitythattheplayerhasthehighestbid,P(2)(v)theprobabilitythattheplayerwithvaluevhasthesecond-highestbidandsoon.Ifthereare3positions,thesurplusbecomes
SðvÞ¼v½P1ðvÞx1þP2ðvÞx2þP3ðvÞx3−pðvÞ:
Thefirsttermistheexpectedsurplustoabidderwithvaluev,recognizingthatitgetsx1clicksifitendsupinthefirstposition,x2clicksifitendsupinthesecondposition,andsoon,witheachclickbeingworthv.Inasimpleauction,thevalueofcominginsecondiszero.Inapositionauction,thevalueofcominginsecondisvx2.
DefineH(v)=P1(v)x1+P2(v)x2+P3(v)x3andwritethesurplusas
SðvÞ¼vHðvÞ−pðvÞ:
ItisnothardtoseethatH(v)hastherelevantpropertiesofaCDF.Itismonotone,sinceitisaweightedsumofmonotonefunctions.FurthermoreifvLandvUaretheupperandlowerboundsonv,H(vL)=0andH(vU)=x1=aconstant.
1178H.R.Varian/Int.J.Ind.Organ.25(2007)1163–1178
Allofthestandardpropertiesofasimpleauctioncarryovertothepositionauction,includingrevenueneutrality,thederivationoftheoptimalreserveprice,andsoon.HencetheBayes–NashequilibriumofapositionauctionisastraightforwardgeneralizationoftheBayes–Nashequi-libriumofasimpleauction.References
Battelle,John,2005.TheSearch.PortfolioHardcover.
Bikhchandani,Sushil,Ostroy,JosephM.,2006.Fromtheassignmentmodeltocombinatorialauctions.In:Cramton,Peter,
Shoham,Yoav,Steinberg,Richard(Eds.),CombinatorialAuctions.MITPress,Cambridge,MA.
Demange,Gabrielle,Gale,David,1985.Thestrategystructureoftwo-sidedmatchingmarkets.Econometrica53,873–878.Demange,Gabrielle,Gale,David,Sotomayor,Marilda,1986.Multi-itemauctions.JournalofPoliticalEconomy94(4),
863–872.
Edelman,Benjamin,Ostrovsky,Michael,Schwartz,Michael,2005.Internetadvertisingandthegeneralizedsecondprice
auction.NBERWorkingPaper,vol.11765.November.
Gale,David,1960.TheTheoryofLinearEconomicModels.UniversityofChicagoPress,Chicago.
Leonard,HermanB.,1983.Elicitationofhonestpreferencesfortheassignmentofindividualstopositions.Journalof
PoliticalEconomy91,461–479.
Roth,Alvin,Sotomayor,Marilda,1990.Two-SidedMatching.CambridgeUniversityPress.
Shapley,Lloyd,Shubik,Martin,1972.TheassignmentgameI:thecore.InternationalJournalofGameTheory1,111–130.Varian,HalR.,1985.Nonparametricanalysisofoptimizingbehaviorwithmea-surementerror.JournalofEconometrics30
(1),445–458.In:Barnett,WilliamB.,Gallant,A.Ronald(Eds.),1990.ReprintedinNewApproachestoModelingSpecificationSelection,andEconometricInference.CambridgeUniversityPress.
因篇幅问题不能全部显示,请点此查看更多更全内容