您的当前位置:首页正文

Repair and regeneration of the respiratory system

2021-11-29 来源:欧得旅游网
CellStemCell

Review

RepairandRegenerationoftheRespiratorySystem:Complexity,Plasticity,

andMechanismsofLungStemCellFunction

BrigidL.M.Hogan,1,*ChristinaE.Barkauskas,2HaroldA.Chapman,3JonathanA.Epstein,4RajanJain,4ConnieC.W.Hsia,5LauraNiklason,6ElizabethCalle,AndrewLe,ScottH.Randell,7JasonRock,8MelindaSnitow,9MatthewKrummel,3BarryR.Stripp,10ThiennuVu,3EricS.White,11JeffreyA.Whitsett,12andEdwardE.Morrisey13,*

1Department2Division

ofCellBiology,DukeMedicine,Durham,NC27705,USA

ofPulmonary,AllergyandCriticalCareMedicine,DukeMedicine,Durham,NC27705,USA

3DivisionofPulmonaryandCriticalCare,DepartmentofMedicine,UniversityofCalifornia,SanFrancisco,SanFrancisco,CA94143,USA4DepartmentofCellandDevelopmentalBiology,UniversityofPennsylvania,Philadelphia,PA19104,USA5DepartmentofInternalMedicine,UniversityofTexas,SouthwesternMedicalCenter,Dallas,TX75390,USA6DepartmentsofAnesthesiologyandBiomedicalEngineering,YaleUniversity,NewHaven,CT06520,USA

7DepartmentofCellBiologyandPhysiology,TheUniversityofNorthCarolinaSchoolofMedicine,ChapelHill,NC27599,USA8DepartmentofAnatomy,UniversityofCalifornia,SanFrancisco,SanFrancisco,CA94143,USA9PerlemanSchoolofMedicine,UniversityofPennsylvania,Philadelphia,PA19104,USA

10RegenerativeMedicineInstitute,Cedars-SinaiMedicalCenter,LosAngeles,CA90048,USA11DepartmentofInternalMedicine,UniversityofMichigan,AnnArbor,MI48109,USA

12SectionofNeonatology,PerinatalandPulmonaryBiology,DepartmentofPediatrics,CincinnatiChildren’sHospitalCenter,UniversityofCincinnatiCollegeofMedicine,Cincinnati,OH45229,USA

13DepartmentsofMedicineandCellandDevelopmentalBiology,UniversityofPennsylvania,Philadelphia,PA19104,USA*Correspondence:brigid.hogan@duke.edu(B.L.M.H.),emorrise@mail.med.upenn.edu(E.E.M.)http://dx.doi.org/10.1016/j.stem.2014.07.012

Respiratorydiseaseisthethirdleadingcauseofdeathintheindustrializedworld.Consequently,thetrachea,lungs,andcardiopulmonaryvasculaturehavebeenthefocusofextensiveinvestigations.Recentstudieshaveprovidednewinformationaboutthemechanismsdrivinglungdevelopmentanddifferentiation.How-ever,thereisstillmuchtolearnabouttheabilityoftheadultrespiratorysystemtoundergorepairandtoreplacecellslostinresponsetoinjuryanddisease.ThisReviewhighlightsthemultiplestem/progenitorpop-ulationsindifferentregionsoftheadultlung,theplasticityoftheirbehaviorininjurymodels,andmolecularpathwaysthatsupporthomeostasisandrepair.

Introduction

Thereparativebehaviorofadulttissuesfallsalonganinjury-responsespectrum.Atoneendofthescalearetissuessuchastheepidermis,intestine,andhematopoieticsystemwithaconstitutivelyhighrateofcellturnoverandawell-delineatedstem/progenitorcellhierarchy.Attheotherendareorgansliketheheartandbrainthatcontainfewstemcellsandcannotrepairefficiently,resultinginscarringafterinjury.Inbetweenthesetwoextremesaretissuessuchasthelung,liver,andpancreasthathavealowsteady-statecellturnoveryetcanrespondrobustlyafterinjurytoreplacedamagedcells.Thisremarkablecapacityhaspromptedstudiesintothemechanismsthatmediateinduc-iblerepair,aswellasstrategiestoharnessthemtherapeutically.ThisReview,writtenbymembersoftheNIH-fundedLungRepairandRegenerationConsortium(LRRC;http://www.lungrepair.org/)hasthreegoals:first,toprovideanoverviewofthestem/progenitorcellsthatbuildtherespiratorysystemandtheirde-scendantsthatrepairtheadultorgan;second,tosurveysomeofthemolecularpathwaysregulatinglungstem/progenitorpop-ulations;andthird,tohighlightrecentdiscoveriesinlungregen-erationbiology,includingbioengineeringofthelung.

Stem/ProgenitorPopulationsinLungDevelopment

Themammalianrespiratorysystemconsistsofatree-likear-rangementofbranchedairwaytubesconnectedtoasingletra-cheaandterminatinginmillionsofdelicateandhighlyvascu-larizedgas-exchangeunitsknownasalveoli(Figure1).Theepitheliumliningthewholesystemiscontinuousandinitiallyarisesfromasmallregionofanteriorventralforegutendoderm,markedbythetranscriptionfactorNkx2-1.Bythetimetheorganismature,theepitheliumdifferssignificantlyalongtheproximal-distalaxis,bothincellularcompositionandstructuralorganiza-tionand,relatedtothis,instemcellcompositionandstrategiesforrepair.Mostofthelungmesenchymelikewisearisesfromasmallpopulationofmesodermcellsthatwillgenerateairwayandvascularsmoothmuscle,cartilage,myofibroblasts,lipofi-broblasts,andpericytes.Thedevelopmentandpatterningoflungendodermandmesodermhasbeenthetopicofseveralcomprehensivereviews(CardosoandWhitsett,2008;HerrigesandMorrisey,2014;MorriseyandHogan,2010;OrnitzandYin,2012;Shietal.,2009),andonlyrecenthighlightsarediscussedhere.

Fromthepointofviewofregenerativebiology,therearemul-tiplereasonswhystudyinglungdevelopmentisimportant.Forexample,somepretermbabiesarebornatthestageoflungdevelopmentwhenprogenitorsofalveolarstemcellsarebeinglaiddown(Blackwelletal.,2011).Perinatalinfectionsandinflam-mationthatdisruptalveologenesisandcausebronchopulmonarydysplasia(BPD)maythereforehavelong-termconsequencesthatmightbeavoidedifweknewmoreaboutunderlying

CellStemCell15,August7,2014ª2014ElsevierInc.123

Review

Figure1.AnatomyoftheAdultHumanandMouseLungandExamplesofHumanLungPathology

Upperpanels:regionalepithelialhistologyinhumanandmouse.Leftpanel:thehumantrachea,bronchi,andbronchioles>1mmindiameterarelinedbyapseudostratifiedepitheliumwithbasal,multiciliated,andsecretorycells.Mucousgobletcellspredomi-nateinthelargerairways,andClubcellspredomi-nateinthesmallerairways.Individualneuroen-docrinecellsandneuroendocrinebodies(NEBs)arescatteredinthelargerairwaysandincreasedistally.Cartilage,smoothmuscle,andstromalcellsareassociatedwithintralobarairwaysdowntothesmallbronchioles.Thesimplecuboidalepitheliumliningtheterminalbronchiolesleadingintotheal-veoliispoorlycharacterized.ThealveoliarelinedbysquamousAEC1sandcuboidalAEC2s.Rightpanel:inthemouse,onlythetracheaandmainstembronchihavecartilageandapseudostratifiedmu-cociliaryepitheliumwithBCs.ThesmallerbronchiandbronchiolesarelinedbyasimpleepitheliumwithmulticiliatedandClubcellsandfewerneuro-endocrinecellsandNEBs.Theinsetillustratesamouselungtothesamescaleasthehumanlungintheleftpanel.Lowerpanels:normalandpathologichumanlung.(AandB)Imagesofthealveolarregionina2-month-oldinfantandanormaladultillustratethatalveolarnumberincreasespostnatallythroughsecondaryalveolarseptalcrestformation.(C)Inpulmonaryemphysema,septaldestructionandlossofalveolarcellsresultsinalveolarenlargement.(D)Inpulmonaryfibrosis,theterminalbronchiolesarepluggedwithmucus,alveolarepithelialmorphologyisabnormal,andalveolararchitectureisdrama-ticallyalteredbyfibroblasticdepositionofextra-cellularmatrix.(EandE0)Bronchiolitisobliteranssyndromeshowingmassiveinfiltrationofimmunecells,severedisruptionofthesmallairwayepithe-lium,andthickeningoftheunderlyingsmoothmuscleandstroma(boxedregionmagnifiedinE0).(F)Normalpseudostratifiedmucociliarybronchialepitheliumfromalungtransplantdonor.(GandH)Gobletsecretorycellhyperplasiaandsquamousmetaplasia,respectively,inchronicobstructivelungdisease.(A–E)and(F–H),respectively,arethesamemagnification.Scalebarin(A)is400mm.

CellStemCell

mechanisms.Moredetailedinformationaboutthemolecularidentityofdifferentcelltypesandtheirlineagespecificationcanalsoinformstrategiesforgeneratinglungcellsexvivofrompluripotentstemcells(PSCs)andprovidenewtoolstomarkandfollowthebehaviorofstem/progenitorcellsinmodelsofhu-manlungdisease.

BranchingMorphogenesisandProximal-DistalPatterningoftheEpitheliumOccurEarlyinLungDevelopment

Perhapsthebest-studiedphaseinlungdevelopmenttodateistheprocessofbranchingmorphogenesis,bywhichthetwopri-marylungbudsthatarisearoundembryonicday(E)9.5inthemouseand4–5weeksgestationinthehumangiverisetotheairwaytree.Thebudsarecomposedofasimpleendodermalepitheliumsurroundedbymesodermandavascularplexus.Thesetissuesareencasedinathinlayerofmesotheliumthatmakesatransientearlycontributiontomesenchymallineages(Dixitetal.,2013).Thebudsextendandbranchinapatternthatisinitiallyverystereotypicbutbecomeslesssoasdevelop-mentproceeds(Metzgeretal.,2008;MorriseyandHogan,2010;Shortetal.,2013).Alllungendodermalcellsinitiallyexpress

124CellStemCell15,August7,2014ª2014ElsevierInc.

Nkx2-1andthismarkerpersistsintotheadult.However,astheprimarybudsextendandbranch,distinctpatternsofgeneexpressionemergeintheendodermofthestalksversusthebuds.Thisproximal-distaldifferenceisexemplifiedbytheexpressiondomainsofSox2andSox9,twotranscriptionfactorsrequiredforearlylungdevelopment.Sox2expressionisconfinedtotheproximalstalks,whileSox9isdynamicallyex-pressedinthemorehighlyproliferativecuboidalcellsofthedistalbuds(Changetal.,2013;Rockichetal.,2013).Manyothergenesaredifferentiallyexpressedinthetips,includingId2,whichen-codesabHLHtranscriptionfactor(Alanisetal.,2014;Herrigesetal.,2012;Rawlinsetal.,2009a).Originallineagelabelingex-perimentssuggestedamodelinwhichtheId2+tipcellsareapopulationofmultipotentprogenitors(Rawlinsetal.,2009a).Earlyindevelopmentthetipcellsgeneratedaughtersthattrans-locateintothestalksandgiverisetoSox2+precursorsofallthecelltypesintheintrapulmonarybronchiandbronchioles.Theseprogenyincludeneuroendocrinecells,multiciliatedcells,anddome-shapedsecretorycells(originallycalledClaracellsbutnowknownasClubcells).EvidencesuggeststhatNotchsignalingplaysakeyroleinthepatterningandspecification

CellStemCell

Review

Figure2.PrenatalandPostnatalAlveologenesisintheMouse

Upperpanel:schematicofthecanalicularandsaccularstagesindicatingthatprecursorsofalveolarepithelialcellsarelaiddownbeforebirth.(Imageofwhole-mountE16lungimmunostainedforE-cadherinwasprovidedbyRossMetzger.)Adistalcanaliculartubuleadjacenttotheoutermesotheliumisshowningreaterdetail(boxes).Evidencesupportsamodelinwhichthepopulationofdistaltipcells(thatareSox9+/Id2+)isbipoten-tial,expressesmarkersofbothmatureAEC2andAEC1cells,andgivesrisetoAEC2s(Sftpc+,orange)andAEC1s(Pdpn+,green,andAGER+,yellow)throughaseriesofintermediatepro-genitors(Changetal.,2013;Desaietal.,2014;Rawlinsetal.,2009a;Treutleinetal.,2014).Duringthesaccularstagethedistaltubulesbegintobudintomultiplesacsthatareinclosecontactwithvascularendothelialcells.AfewSox9+/Id2+pu-tativebipotentialprogenitorsremainatthisstage.Lowerpanel:schematicrepresentationofpost-natalchangesinlungarchitecture.Thenewbornlunghasonlyprimarysepta.AroundP4secondarysepta(asterisks)developfromcrestsoftissuecontainingcapillaryandstromalcellsthatmigrateinfromthewallsandsubdividealveoli.Thestromalpopulationisincompletelydefinedbutincludespericytes,fibroblasts,lipofibroblasts,andmyofi-broblasts.Thelatterarethoughttobethemainproducersoftheelastindepositedatthetipofeachseptumandinthewalls,forminganinte-gratedfibroelasticnetwork.Inset(redrawnfromSiriannietal.,2003)showsaschematicoftheputative‘‘niche’’ofanAEC2stemcell.Thisin-cludesAEC1s,lipofibroblasts,endothelialcells,pericytes,andextracellularmatrix(dashedlinerepresentsbasallamina,anddotsarecollagen,elastin,andmanyothercomponents).

ofthesedifferentcelltypes(Morimotoetal.,2012;Tsaoetal.,2009).LaterindevelopmenttheId2+tipcellsgiverisetoalve-olarcelltypes.MorerecentlineagetracingstudieswithaShh-

CreERallelesupporttheideathattipcellsaremultipotentprogenitors,al-thoughwhetheractivityofthiscredriverisrestrictedtothedistaltipatthisstageofdevelopmentwasnotdirectlytested(Desaietal.,2014).FuturestudiesusingSox9-CreERandotherprogenitorcell-specificdriversshouldfurtherrefineourunderstandingofthemultipotencyofdistaltipcells.

Alveologenesis:ACriticalStageinPreparingtheLungforGasExchange

AroundE15.0,branchingmorphogenesisslowsandimportantchangestakeplaceinthedistalepithelium(Figure2).Thetubesbecomenarroweror‘‘canalicular’’andmorecloselyassociatedwiththesur-roundingvasculature.Cellsinthedistalpartofthetubulesbegintoexpressgenescharacteristicofthetwoepithelialcelltypesthatmakeupthematurealveoli,

namelythetype1cells(AEC1s,whichexpressHopx,podoplanin(Pdpn,alsoknownasT1alpha),andAGER)andtype2cells(AEC2s,whichexpressproteinsassociatedwithhighlevelsof

CellStemCell15,August7,2014ª2014ElsevierInc.125

surfactantproductionandsecretion,suchasSftpA-C)(Treutleinetal.,2014).Subsequently,thetubulesenterthe‘‘saccular’’phasethatinvolvesthe‘‘budding’’oftinyperipheralsacssepa-ratedbyprimarysepta.Postnatally,thesesacsarefurthersub-dividedbysecondarysepta(Figure2).LineagetracingsuggeststhepresenceofbipotentialcellsinthetipsofthedistaltubulesthatcangiverisetobothAEC1andAEC2cells(Desaietal.,2014).Therehasbeenprogressindefiningmorepreciselythein-termediateprogenitorsinthelineagesbetweenbipotentialcellsandmatureAEC1andAEC2cells,andsingle-cellRNA-seqanal-ysishasemergedasapowerfultoolinthisendeavor(Changetal.,2013;Desaietal.,2014;Treutleinetal.,2014).Amajorquestionforthefutureisthenatureofthesignalsthatcontroltheonsetofthecanalicularandsaccularstages.Rolesforsig-nalsfromtheadjacentmesoderm,includingglucocorticoids,ret-inoicacid,Fgf,parathyroidhormone,andinsulin-likegrowthfactor1,havebeenproposed(Alanisetal.,2014;Changetal.,2013;ElAghaetal.,2014;Epaudetal.,2012;Moreno-Barriusoetal.,2006;Ramirezetal.,2000).Signalsfromthevasculaturemayplayimportantrolestoo,giventhecloseassociationbe-tweenendotheliumandendodermatthistime(Figure2).

Developmentofthealveolidoesnotstopatbirth;theirnumberandsurfaceareaincreasesdramaticallypostnatallyandcon-tinuesforweeks(mice)andmonths(humans)withtheformationofnewsecondarysepta(Figures1Band2).Thesecondaryseptaarisefromridgesonthewallofthealveolarsacsandthecapil-larieswithinthemundergoremodelingbymechanismsthatarepoorlyunderstood.Thecapillarymeshworkalsoincreasesinsizebyaprocessknownasintussusceptivemicrovasculargrowth(Burrietal.,2004).Onlyaverythinlayerofmatrix,asharedbasallamina,eventuallyseparatesAEC1sandthecapil-laryendothelialcells.Stromalcellsalsomoveintotheseptaanddifferentiateintopericytes,lipofibroblasts,myofibroblasts,andotherpoorlydefinedlineages.Lipofibroblastsappeartoasso-ciatecloselywithAEC2swhilemyofibroblastslaydownelastinfibersatthetipoftheseptaandinthestalks.Thesefibersformanintegratednetworkthroughoutthealveolarregion,providingaflexibleandelasticscaffoldthatiscriticalformain-taininglungfunctionandforkeepingthesmallterminalairwaysandalveolarductsopen(Weibel,2013).Mechanicalforcesandphysicalstressareemergingaskeyregulatorsofalveolardevel-opment,maintenance,repair,andregrowth(reviewedinHsiaetal.,2004;WirtzandDobbs,2000).

EmbryonicMesodermContributestoLungDevelopmentandPromotesEpithelialDifferentiation

Themesodermalcomponentofthelungprimordiumplaysmul-tiplerolesinlungdevelopment(reviewedinHerrigesandMorri-sey,2014).ThecellsaroundthedistaltipsfunctionasacriticalsignalingpopulationproducingFgf10andothersignalingmole-culesthatdriveoutgrowthofthedistalbudsandbranchingmorphogenesis.Thisearlymesodermalsocontainsprogenitorsforspecificcellpopulationsoftheadultlung.Amajorfocusofrecentstudiesistounderstandhowthesemesodermalderiva-tivescontributetoadultlungfunctionandtoregenerationandrepair.Recentcelllineagetracingexperimentshavedemon-stratedthattheearlymesodermharborsacardiopulmonarymesodermprogenitor(CPP)thatexpressesWnt2/Gli1/Isl1andcangeneratebothcardiacandlungmesodermalderivatives,includingcardiomyocytes,endocardium,pulmonaryvascular

126CellStemCell15,August7,2014ª2014ElsevierInc.

Review

CellStemCell

andairwaysmoothmuscle,andpulmonaryPdgfrb+pericyte-likecells(Pengetal.,2013).Asdevelopmentproceeds,CPPslosetheirabilitytocontributetothevariouslungmesodermalderivativesandbytheendofgestationcanonlymakePdgfrb+pericyte-likecellsandnotsmoothmuscleorendothelium.Thissamestudyalsoshowedthatthebulkofthevascularendothelialplexusinthealveolarregionisderivedfrompreexistingembry-onicendothelium,likelythroughanangiogenicprocess(Pengetal.,2013).SinceWnt2+andGli1+cellspersistintheadultlung,animportantquestioniswhetherthesecellsplayaroleinregenerationafterinjury.Gli1isadownstreameffectorofHedge-hogsignalingandcomponentsofthispathwayhavebeenas-sociatedinGWASstudieswithchronicobstructivepulmonarydisease(COPD)(Pillaietal.,2009;Wangetal.,2013a;Wilketal.,2009).Therefore,theHedgehogpathwayandGli1+cellsmayplayaroleinadultlunghomeostasisandinjuryresponsebycontrollingmesodermalexpansion.

LineagetracingstudieshavealsoshownthattheFgf10-pro-ducingcellsofthedistallunggiverisetomultiplemesodermalcomponentsintheadult,includingairwaysmoothmuscleandalveolarlipofibroblasts(ElAghaetal.,2014).ThereisevidencethatFgf10isreactivatedinparabronchialsmoothmuscleafterinjury,includingexposuretonaphthalene,andmaypromotethereparativeprocess(Volckaertetal.,2011).

PreviousworkhasestablishedarequirementforPdgfra-ex-pressingcellsinthedistalembryoniclungforthedevelopment

ofalveolarmyofibroblasts(Bostro

¨metal.,1996).RecentstudieshaveindicatedthatPdgfraisdynamicallyexpressedinalveolarmyofiboblastsduringregrowthafterpneumonectomy(PNX)(Chenetal.,2012b).Pdgfraalsomarksapopulationoflipofibro-blast-likecellsthatarespatiallyassociatedwithAEC2cellsandlikelyformpartofthealveolarstemcellniche(Figure2)(Barkaus-kasetal.,2013).Studiessuchasthesehavebeguntoaddresssomeoftheoutstandingquestionsabouttheorigin,heterogene-ity,andfunctionoflungmesodermalcellsandhowtheyinteractwiththevariousepithelialcomponentstoestablishandmaintainnormallungfunctionandcontributetorepair.

ApplyingDevelopmentalPathwaystoDeriveLungProgenitorsfromPSCs

OneareaofresearchwheredevelopmentalstudiesarehavingabigimpactisinthederivationoflungcellsfromPSCs.SeveralgroupshavedemonstratedthatstepwiseapplicationofsignalingfactorsinamannerthatmimicsthesequenceofeventsduringearlyanteriorforegutandlungdevelopmentiscriticalforderivinglungendodermprogenitorsfrommouseandhumanPSCs.KeypathwaysincludethosedownstreamofActivin/Nodal,Wnts,Bmps,andFgfs(Ghaedietal.,2013;Huangetal.,2014;Longmireetal.,2012;Mouetal.,2012;Wongetal.,2012).PSC-derivedlungendodermcanbeusedforbasicstudiesofdiseasessuchascysticfibrosisandpo-tentiallyforcell-basedtherapies.Thisareaofresearchwillundoubtedlycontinuetobeanimportantfocusinlungregen-erationresearch.

RegionalEpithelialStem/ProgenitorCellPopulationsMediatingAdultLungHomeostasisandRegenerationThreeinterrelatedconceptshaveemergedfromrecentstudiesonadultlungreparativecellbiology.Thefirstisthat,dependingonthecompositionandorganizationoftherespiratory

CellReview

StemCell

epithelium,distinctregionsofthelungcontaindifferentpopula-tionsofepithelialcellsthatfunctionasadultstemcells,asdefinedbytheirabilitytoundergolongtermself-renewalandgiverisetodifferentcelltypesduringhomeostaticturnoverorcellreplacementafterinjury.Thesecondisthatlungcellsexhib-itingstem/progenitoractivityarenotnecessarilyundifferen-tiated.WhileTrp63+basalcells(BCs)inthepseudostratifiedmucociliaryepitheliumaremorphologicallysimple,AEC2cellsinthealveoliandClubcellsinmousebronchioles,bothofwhichfunctionaslong-termstemcells,alsoexpressgenesassociatedwithspecializedfunctions,suchassurfactantproteinsynthesisandsecretionandglycoproteinproduction,respectively.Thethirdconceptisthatinresponsetotissuedamage,epithelialcellsthatexpressmarkersofonedifferentiatedcelltypecan,undercertaincircumstances,changetheirphenotypeandgiverisetocellsthateithertransientlyorstablyexpressmarkerscharacter-isticofanothercelltype.Insomecaseslineagetracingexperi-mentshaveshownthatthisphenotypicswitchingorplasticityinvolvesaprocessof‘‘dedifferentiation’’toalessspecialized,multipotentandproliferativeintermediate,followedbyrediffer-entiation.Inothercasestheprecisestepsinvolvedhavenotyetbeenidentifiedanditremainspossiblethatthephenotypicswitchis‘‘direct’’anddoesnotinvolveaspecificundifferentiatedandproliferativeintermediate.Phenotypicplasticityisnotuniquetothelunganddedifferentiationortransdifferentiationappar-entlyoccurquitefrequentlyinresponsetoadverseeventsinvarioustissues(BlanpainandFuchs,2014;Fuhrmannetal.,2014).Importantly,theprocesscanbestronglyinfluencedbytheparticularkindofdamagesustained,whetheritisacuteorchronic,andwhetheritinvolvesinflammationorimmunemodulation.

Modernstudiesofstemcellbehavior,includinginvestigationofplasticityinthephysiologicalcontextofanadulttissueunder-goingrepair,areheavilydependentonthetechniqueoflineagetracing(BlanpainandSimons,2013).Inthefollowingsectionswesummarizesomeoftherecentfindingsaboutepithelialstem/progenitorcelllineagesindifferentregionsoftheadultlung,focusingonstudiesbasedonrigorouslineagelabelingstra-tegies.

StemandProgenitorCellsofthePseudostratified

MucociliaryAirwayEpitheliumContributetoRepairandRegeneration

Mostoftheairwaysofthehumanlung,downtoabout1.0–1.5mMindiameter,arelinedbyapseudostratifiedmucociliaryepitheliumcontainingmulticiliated,secretory,tuft,andneuroen-docrinecells,aswellasapopulationofBCsthataretightlyattachedtothebasallaminathroughhemidesmosomescontain-inga6b4integrin.TheheightoftheluminalcellsandpropertiessuchastheproportionofgobletanddifferentsecretorycellsandthedensityofBCsvaryalongtheproximal-distalaxis.Un-derlyingtheepitheliumarebloodvessels,smoothmuscle,carti-lage,stromalfibroblasts,andnerves.AsshowninFigure1andschematicallyinFigure3,thenormalorganizationofthemuco-ciliaryepitheliumisdisruptedincommonpathologicalcondi-tions.Inthecaseofmucushyperplasiatherearemanymoregobletcellsthannormal,whileinsquamousmetaplasiatherearemultiplelayersofBCsthatgiverisetokeratinizedsquamouscells.BothmucushyperplasiaandsquamousmetaplasiaareseenintheconditionknownasCOPD.

Asimilarbasicorganizationofpseudostratfiedmucociliaryepitheliumandunderlyingmesenchymeisfoundinthemousetrachea(whichisabout1.5mMindiameter),extralobarbronchi,andthefirsttwoorthreegenerationsofbranchesalongtheintra-lobarmainaxialpathway.Theseregionsthereforeprovideanexperimentalplatformformodelinghumanairways(Rocketal.,2010)(Figure3).TheBCsofthemouseproximalairwayscharacteristicallyexpressTrp63,Ngfr,Pdpn,thealpha1-3galepitopethatbindsGSIB4lectin,andcytokeratin5(Krt5)(Pauletal.,2014;Rocketal.,2009;Tataetal.,2013).Atsteadystateabout20%ofBCsalsoexpressKrt14(Coleetal.,2010).Thiscy-tokeratinisalsoconstitutivelyexpressedinBCsliningtheductsofsubmucosalglands(thatarenotconsideredfurtherhere)andisupregulatedinmostKrt5+BCsduringrepair(Hongetal.,2004;Wansleebenetal.,2014).ThenumberandproportionofKrt5+BCsdeclinewithageinthemousetrachea,whichoccursalongwithothersignificantchangesinepithelialarchitectureandcompositionofstromalimmunecells(Wansleebenetal.,2014).TheconsensusfrominvivolineagetracingexperimentsisthatBCsarestemcellsthatself-renewoverthelongtermandgiverisetociliatedandsecretoryluminalcellsduringpost-natalgrowth,homeostasis,andepithelialrepairafterlossofluminalcells(Figure3).Differentexperimentalmodelshavebeendevelopedtoinducethislossinthemouse.Forexample,exposingmicetotoxicgases(e.g.SO2,orchlorine)ordetergentkillsallproximalluminalcells,whilesystemicnaphthalenekillsClubcellsinthetracheaaswellasthebronchioles.TherearemanyquestionsaboutBCsthathavenotyetbeenfullyanswered.Forexample,wedonotknowwhetherallTrp63+/Krt5+BCsaremultipotent,withthesamereparativecapacity,orwhethertherearesubsetsthatarequiescent(forexampleKrt5+cellsversusKrt5+/Krt14+cells)orhaveintrinsicallydifferentpotentials.Thesequestionsawaitquantitative,single-cellclonalanalysisunderbothsteady-stateanddifferentrepar-ativeconditions.Inaddition,wedonotknowtheprecisemech-anismsbywhichBCsgiverisetociliatedandsecretorycellsandwhatenvironmentalsignalsaffectthefatedecision.Onemodel,basedonstudiesoftheintestinalstemcellsoftheDrosophilalarvalmidgut(LucchettaandOhlstein,2012;OhlsteinandSpra-dling,2007),holdsthatBCsgiverisetoTrp63À/Krt5+/Krt8+earlyprogenitorsor‘‘intermediate’’cellsthatcanproliferateandgiverisetoeithersecretoryorciliatedcellsdependingonlocalsignals,includingthelevelofintracellularNotchsignaling(Gusehetal.,2009;Rocketal.,2011b).Recentstudiesinthehu-manlunghavedescribedapowerfulnoninvasivelineagetracingmethodologyforaddressingthepotentialofindividualairwayprogenitorcellstoself-renewanddifferentiate(Teixeiraetal.,2013).TheresultsareconsistentwithamodelinwhichBCsareapopulationofmutipotentprogenitorsthatself-renewand/ordifferentiatestochasticallytomaintaintissuehomeostasis.However,theydonotruleouttheexistenceofaquiescentstemcellpoolthatisonlyactivatedafterinjury.

Onequestionofpracticalrelevanceforregenerativethera-piesinthehumanlungiswhetherBCsaretheonlycellthatcanefficientlyrepairthepseudostratifiedepitheliumorwhetherdifferentiatedcellscanbecomeBCsundercertainconditions.Thisquestionhasbeenaddressedusingtherodenttracheaasamodel.PioneeringstudiesbyRandellandcolleaguesus-ingdenudedrattracheassuggestedthatGSIB4Àluminalcells

CellStemCell15,August7,2014ª2014ElsevierInc.127

Review

CellStemCell

Figure3.Homeostasis,Repair,andRemodelingofPseudostratifiedMucociliaryAirwayEpitheliumwithBCs

Solidlinesrepresenttransitionsorlineagesthataregenerallyaccepted,whiledottedlinesarespeculativelineagesorrelationships.Curvedarrowsrepresentself-renewal.Leftpanel:schematicrepresentationofpseudostratifiedmucociliaryepitheliumofthehumanlung.ThedensityofBCsandheightandcompositionofluminalcellsvariesalongthemainaxis.Afew‘‘intermediate’’cells,whichmayrepresentimmediateundifferentiatedprogenyofBCs,arepresent.Inmucushyperplasiathenumberofgobletcellsincreaseseitherbyproliferationofexistinggobletcellsorbydifferentiationofothersecretorycells.Insquamousmetaplasia,BCschangetheirbehaviorsothatthepoolofproliferativeKrt5+/Krt14+BCsexpandsandstratifiesandupperlayersdifferentiateintokeratinizedsquamouscells.Bothconditionsmaybereversible.Rightpanel:repairandremodelinginthemousetracheaandprimarybronchi.Sincefewgobletcellsarenormallypresentinmouseairways,theirincreaseinnumberinresponsetoimmunestimuliiscalledmetaplasiaratherthanhyperplasia.GeneticlineagetracinghasshownthatScgb1a1+cellsarethepredominantsourceofgobletcellsinresponsetoallergenexposure(Chenetal.,2009).IfluminalcellsarekilledbySO2,survivingBCsspreadandproliferate.TheygiverisetoapopulationofKrt8+progenitorsthatdifferentiateintociliatedandsecretorycells.Thereistransientinfluxofimmunecellsintotheunderlyingstroma.IfBCsarekilledgenetically,secretorycellslineage-labeledwithadriverfordifferentiatedcellproducts(Scgb1a1orAtpv1b)giverisetosomeoftheregeneratedBCsthatcontinuetofunctionasstemcells(Tataetal.,2013).InsetshowssomeofthenonepithelialcomponentsoftheBC‘‘niche.’’Inadditiontothebasallamina,theseincludefibroblastsandvasculatureandimmunecells.Lowerpanel:summaryoflineagerelationshipsfromstudieswithbothmouseandhumanairways.InbothtissuesBCsareheterogeneousforexpressionofKrt14;whethertheseBCsareinterconvertableand/orwhetherKrt14+cellshaveahigherprobabilityofdifferentiationratherthanself-renewalisnotknown.Theexistenceofanintermediateprogenitorcellisinferredfromstudiesonrepair.ThiscellisKrt8+butmaytransientlyexpressKrt5/Krt14.BCsandtheirimmediatedaughtersgiverisetociliatedandsecretorycellsduringrepair(Rocketal.,2011b).Whethertheydirectlygiverisetoneuroendocrinecellsandgobletcellsorwhethergobletcellsonlyarisefromsecretorycellsisnotknown.SecretorycellsincludeScgb1a1+ClubcellsaswellasvariantClubcellsthatpredominantlyexpressotherproducts(seetext).Scgb1a1+cellscangiverisetociliatedcells.

werejustasabletoregeneratetheentireepitheliumaslectin+BCs(Liuetal.,1994).Subsequentlineagetracingstudiesshowedthatsecretorycellsexpressingsecretoglobin1a1(Scgb1a1;alsocalledCCSPorCC10)cangiverisetoKrt5+

128CellStemCell15,August7,2014ª2014ElsevierInc.

BCsafterSO2-inducedinjury,butthefrequencyofconversionwasverylow,probablybecausemostlyBCssurvivethisinjury(Rawlinsetal.,2009b).Toovercomethisproblem,RajagopalandcolleaguesusedastrategytospecificallykillKrt5+BCs

CellStemCell

Review

Figure4.EpithelialCellsofMouse

BronchiolesandtheCellularResponsestoInjury

Schematicrepresentationofdifferentcelltypesinthemousebronchiolarepithelium.Allcellsarelikelyattachedtothebasallaminathrougha6b4integrin.ThefullheterogeneityofepithelialcelltypesisstillunderinvestigationandthepresenceofrareTrp63+cellsiscontroversial.Shownwithdashedarrowsareputativecells-of-originoftheKrt5+/Trp63+basal-likecellspresentin‘‘pods’’inthelungsofmiceafterinfectionwithH1N1in-fluenzavirus.ThereissomeevidencethattheseKrt5+cellscontributetotheregenerationofdamagedalveoli,butmorelineagetracingdataarerequired.

inthemousetracheainvivo(Tataetal.,2013).UndertheseconditionstheyfoundthatdifferentiatedScgb1a1+orAtpv1b1+lineagelabeledsecretorycellscanundergodedif-ferentiationintoTrp63+/Krt5+BCs.TheseBCspersistoverthelongtermandbehavelikenormalKrt5+stemcells.Animportantquestionraisedbyallthesestudiesconcernsthemechanismsthatnormallyconstrainthepotentialplasticityofsecretorycells.DatafromthestudiesbyTataetal.usinginvitrocultureexperimentssuggestthatcontactwithBCspre-ventsluminalcellsfromdedifferentiation,buttheprecisemechanismsdrivingreprogrammingandsubsequentstemcellfunctionneedfurtherstudy.

Howbasalandluminalcellsrepopulateanairwaydenudedofepitheliumbyinjuryhasconsiderablerelevancetoproposalstobioengineerreplacementlungsorairwaysegmentsbyseedingcellsintodecellularizedlung‘‘scaffolds’’(seelatersection).Ev-idencefrominvivoinjury/repairmodelssuggeststhatifthebasallaminaisnotcompletelycoveredbyBCs,theunderlyingstromaproliferatesoutofcontrolandgivesrisetogranulationtissuecontainingfibroblastsandimmunecellsandblockstheairways(O’Korenetal.,2013).Thisfindingsuggeststhatthereisnormallyatightinterplaybetweentheairwayepitheliumandtheunderlyingstromathatkeepsfibrosisincheck.Identifyingthefactorsthatmediatethissignalingmaynotonlyinformstra-tegiesforbioengineeringreplacementpartsbutalsoprovideinsightsintorespiratorydisorders,suchasbronchiolitisobliter-ans,inwhichfibrosisrestrictssmallairwaysinthehumanlung(Figure1).

LungInjuryModelsRevealDifferentialRegenerative

CapacitiesofEpithelialCellsoftheMouseBronchioles

Thesmallintralobarairwaysofthemouselungarecalledbronchioles;theydonothavecartilagesoradedicatedsystemicbloodsupplyandaresurroundedbyairwaysmoothmuscleandfibroblasts(Figures1and4).TheepithelialliningisasimplecuboidalepitheliumcontainingFoxj1+multiciliatedcellsandneuroendo-crinecellsthatareusuallyclusteredintoneuroendocrinebodies(NEBs).Thebron-chiolesalsocontainaheterogeneous

populationofsecretorycellsthatarestillnotfullydefined.Thebest-studiedareClubcellsthatinthematurestatehaveachar-acteristicdomedappearancewithvesiclescontainingthesecre-toglobinScgb1a1.TherehasbeenrecentprogressinidentifyingnewmarkersforClubcellsthatcanbeusedtofollowtheirdevel-opmentandfunctionalheterogeneity(Guhaetal.,2014).ClubcellsimmediatelyadjacenttoNEBsareresistanttonaphtha-lene-induceddepletionandcharacteristicallyexpresslowlevelsofScgb1a1buthighlevelsofScgb3a2anduroplakin3a(Upka3)(Guhaetal.,2012).

Usingstandardimmunohistochemicalanalysis,thebronchi-olesofthemouselungdonotappeartocontainBCs,butthepresenceofrareTrp63+cellshasnotbeenruledout.Thetransi-tionfrombronchiolestoalveolarsacsinthemouselungisknownasthebronchioalveolarductjunction(BADJ).Itcontainsafewcells(<1perBADJ)thatcoexpressScgb1a1andsurfactantpro-teinC(Sftpc)proteinsandareproposedasputativebronchioal-veolarstemcells(BASCs)(Kimetal.,2005)(Figures3and4).Itshouldbenotedthatthetransitionbetweenterminalbronchiolesandalveoliisquitedifferentinmouselungascomparedtohu-manlung(Figure1).

Turnoverofmousebronchiolarepitheliumisnormallyquitelow,butlineagetracingstudieshaveestablishedthatScgb1a1+cellsdoself-renewandgiverisetociliatedcellsoverthelongterm(Rawlinsetal.,2009b).Thus,theScgb1a1+populationmeetsthedefinitionoflong-termstemcellsalthoughitdemon-stratesadifferentiatedphenotype.Moreover,asdiscussedhereandinthenextsection,thereisnowevidencethatthe

CellStemCell15,August7,2014ª2014ElsevierInc.129

Figure5.StemCellsoftheMouseAlveolarRegionandTheirRoleinResponsetoInjury

Schematicdiagramofnormalmousealveolarregionandchangeselicitedbyexposuretobleomycin.AtsteadystatethereislittlecellturnoverandAEC2sself-renewandgiverisetoAEC1swithlowfrequency.Bleomycindamagesmultiplealveolarcelltypesresultingintheexposureofdenundedbasallaminaandmatrix(dashedlines)andinfluxofimmunecells.Variousmesenchymalcellsproliferateandgiverisetomyofibroblastsandlargeamountsofextra-cellularmatrix.Inthismodelevidencearguesagainstmyofibroblastsbeingderivedfromepithelialcellsandthefibrosisistransient(Rocketal.,2011a).BothAEC2sandScgb1a1+cellsintheBADJproliferateandgiverisetothemajorityoftheAEC2andAEC1cells(dottedcells)inthefibroticregions(Barkauskasetal.,2013).EpithelialcellsinthealveolarregionthatareSftpcÀ/b4integrin+mayalsobeasourceofreparativeAEC2s(Chapmanetal.,2011).Lowerpanel:schematicofdifferentcelltypesinvolvedinalveolarturnoverandrepairinthebleomycininjurymodel.Adetailedinventoryofepithelialmarkerscanbefoundfromsingle-cellRNA-seqstudies(Treutleinetal.,2014).

proliferationandphenotypeofScgb1a1+Clubcellscanchangeinresponsetocertaininjury/repairmodels(Figures4and5).SystemictreatmentofmicewithnaphthalenekillsClubcellsthatexpressthecytochromeCyp2f2.Ciliatedcellsspreadtocoverdenudedmatrixbutdonotproliferate,andtheepitheliumisrestoredbytheproliferationofnaphthalene-resistantClub

130CellStemCell15,August7,2014ª2014ElsevierInc.

Review

CellStemCell

cells,includingthoseadjacenttoNEBsandintheBADJ(Gian-grecoetal.,2002;Guhaetal.,2014).IthasbeensuggestedthattheNEBsprovideaspecificnicheforreparativeClubcells.However,deletionofneuroendocrinecellsdidnotaffecttheabil-ityofClubcellstoregenerateafternaphthaleneinjury(Songetal.,2012).LineagetracingstudiesusingaCgrp-CreERallelehaveprovidedevidencethatdifferentiatedneuroendocrinecellscanproliferateafternaphthalene-inducedlossofClubcellsandgiverisetolineagelabeledClubandciliatedcells.Thisconclu-sionistemperedbythefactthatthewash-outperiodbetweentamoxifenadministrationandnaphthalenetreatmentwasveryshort,sothatintheseexperimentsClubcellsupregulatingCgrpmighthavebeenlineagelabeled(Songetal.,2012).

Thedamagecausedbynaphthalenetreatmentisrelativelyspecificandappearstoberapidlyrepaired.However,muchmoreextensivedamageiscausedinthemouselungbyH1N1influenzaviralinfection(Kumaretal.,2011).Althoughthereisclinicalevidenceforrepairofthehumanlungafteracuteinflu-enzainfection(Toufenetal.,2011),precisemechanismsarestillpoorlyunderstood.Inthemouseitappearsthataquiteunex-pectedlevelofplasticitycanbeevokedinepithelialcellsinresponsetosignalsexpressedaftersuchviralinfection.Immu-nohistochemistryofmouselungafterinfectionshowsthepres-enceofepithelial‘‘pods’’containingKrt5+/Trp63+basal-likecellsbotharoundthebronchiolesandwithinthealveoliintheareasofgreatestdamage(Kumaretal.,2011)(Figure3).LineagetracingexperimentsusinganScgb1a1-CreERallelehavesug-gestedthatthepodsarisefromClubcells.However,intheseexperimentsthewash-outperiodbetweenadministrationoftamoxifenandviralinfectionwasagainquiteshort(7days).Consequently,anScgb1a1ÀcellactivatedbytheinjurymighthavebeenlabeledifittransientlyupregulatedScgb1a1earlydur-ingtherepairprocess(Zhengetal.,2014).Alternatively,thepodsmayarisefromasyetuncharacterizedprogenitorpopulationsinthebronchiolesand/orfromAEC2cellsinthealveoli(XianandMcKeon,2012).Krt5+podshavebeenidentifiedinmouselungsafterbleomycininjury(Zhengetal.,2014),butagain,theiroriginisnotyetresolved.Giventhehighrelevanceofinfluenzainfectiontohumanhealth,thisisanimportantareaofresearch.Morein-formationisneededabouttheextenttowhichtheKrt5+repara-tivecellsdoinfactcontributetoalveolarrepair,howthisisachieved,andwhetherthesamecelltypeortypesplayaroleinthehumanlung.

TheImportanceofInjuryModelsforStudyingStemandProgenitorCellsoftheAlveolarCompartment

ThemajorepithelialcelltypesofthegasexchangeregionarecuboidalAEC2s,specializedforsurfactantproteinproductionandsecretionandflat,highlyextendedAEC1s,specializedforgasexchange(Figure5).Cellturnoverisnormallyverylow,butnumerousstudieshaveshownchangesincellbehavior,includingproliferation,normaldifferentiation,andphenotypicplasticityinresponsetoavarietyofinjurymodels.Theseincludeexposuretonitricoxide,highlevelsofoxygen(hyperoxia),thechemotherapydrugbleomycin,cigarettesmoke,irradiation,andviralinfection.

Alveolarepithelialtype2cells(AEC2).Studiesmorethan40yearsagowithH3thymidinelabelingshowedthatAEC2sinadultmonkeysandratsproliferateinresponsetoinjurybyhyperoxiaandnitricoxideandgiverisetoAEC1s(Evansetal.,1975;

CellReview

StemCell

Kaplanetal.,1969).Thiscapacityforself-renewalanddifferen-tiationofadultAEC2shasbeenconfirmedbyrecentinvivoge-neticlineagetracingstudiesusingCrerecombinasedrivenbygenesassociatedwithdifferentiatedfunctionssuchasSftpcandLyz2(LysM)(Barkauskasetal.,2013;Desaietal.,2014).Insteadystate,thereisrelativelylittleclonalexpansionofindividualAEC2sandverylittledifferentiationintoAEC1s.Afterinjuryofthealveolarregionbybleomycin(Rocketal.,2011a)andbyhyper-oxia(Desaietal.,2014),therateofdifferentiationoflineagelabeledAEC2sintoAEC1sismuchhigher.Tofollowthisregen-erativecapacityintheabsenceofconfoundingfibrosis,anewmodeloflunginjurywasdevelopedinwhichabout50%oftheAEC2cellsarespecificallykilledbyinducedexpressionofdiphtheriatoxin.Lineagetracing,coupledwithnewimagingtechniques,showedthatsurvivingAEC2cellsundergoclonalexpansion,withdaughtercellsdispersingamongneighboringal-veoli,mostlikelybyactivemigration(Barkauskasetal.,2013).TherateofdifferentiationintoAEC1sislow,presumablybecausethiscellpopulationisnotdamaged.

Theseobservationsraiseseveralinterestingquestions.Forexample,isthereheterogeneityintheAEC2populationordotheyallhavethesamecapacityforself-renewalanddifferentia-tion?Someevidenceforheterogeneitycomesfromthefactthatabout10%ofadultAEC2sarelineagelabeledinvivobyanScgb1a1-CreERknockinalleleandgiverisetoadenocarci-nomasafterKrasactivation(Xuetal.,2012).InadditionarecentreportsuggeststhatanSftpcÀ/integrinb4+celltypeexistsinthealveolithatcangenerateSftpc+AEC2andAEC1cellsafterinjury(Chapmanetal.,2011).AnotherimportantquestionisthenatureofthenicheinwhichAEC2sresideandwhetheritproducesspe-cificsurvivalandhomingsignalsafterlossofAEC2s.Toaddressthisquestion,assayshavebeendevelopedforclonalexpansionoflineagelabeledAEC2sin3Dorganoidculture.Inthisassay,AEC2sonlyproliferateinthepresenceofPdgfra+stromalcellsandtheyform‘‘alveolopheres’’containinglineagelabeledAEC1sexpressinganumberofmarkers,includingPdpn,Hopx,AGER,andAquaporin5(Barkauskasetal.,2013).Similarassaysarebeingusedtoidentifyfactorsmadebyothermeso-dermallineagessuchasendothelialcellsthattogetherwiththefibroblastslikelycomprisethealveolarstemcellniche(Leeetal.,2014).Inturn,understandinghowAEC2sregulatethebehaviorofthenicheisalsoimportant,andrecentstudiessug-gestedaroleforBmp4andthrombospondininthereciprocalinteractionbetweenepithelialprogenitorsandendothelialcells(Leeetal.,2014).

ItishasbeenhypothesizedthatAEC2sthatarestressedduetocellulardamageoragingareunabletoundergoself-renewalandgenerationofAEC1sbutinsteadsignalfibroblasticprolifer-ation,oratleastfailtokeepstromalproliferationincheck.Inthehuman,stressmaybecausedbygeneticmutationsresultinginunfoldedsurfactantproteins.Inthediseasedyskeratosisconge-nita,environmentalstimulisuchassmokeordustcombinedwitharelativestemcelldeficiencyduetolackoftelomerasecompo-nentsresultsinpulmonaryfibrosis(reviewedinNobleetal.,2012).Identificationandcharacterizationofthesignalsgener-atedbyAEC2sthatkeepstromalpopulationsinaquiescentstatewillbeimportantforfuturedevelopmentoftherapiesforfi-broproliferativediseasessuchasidiopathicpulmonaryfibrosisandbronchiolitisobliterans.

Alveolarepithelialtype1cells(AEC1).PreviousstudieshavesuggestedthatAEC1snormallyhavealimitedproliferativeca-pacityinvivoandcanmodulatetheiridentitywhenculturedinvitro(Dantoetal.,1995;Evansetal.,1973).Inthefuture,noveltoolsincludinginducibleCrelinesmadeusinggenessuchasHopxandAGERexpressedinmatureAEC1s(Barkauskasetal.,2013;Takedaetal.,2013;Treutleinetal.,2014)mayallowtheabilityofthesecellstoproliferateandgiverisetoAEC2cellsinspecificinjurymodelstobeaddressedunambiguously.ThepotentialroleofchangesinAEC1s,AEC2s,andmesenchymalcellsinthedevelopmentofsmoking-andage-relatedemphy-sema,inwhichthereisadeclineinthenumberofAEC2sandsimplificationofalveoli(Figure1),isalsoanimportantavenueofinquiry.

RemodelingandRegrowthoftheAlveolarRegionafterPNXandBleomycinInjury

Uponreachingadulthood,cessationofribcageexpansioncoin-cideswiththecessationoflunggrowthinlargemammals.There-after,reinitiationoflunggrowth/regenerationrequireschangesinmechanicalsignalsandtheavailabilityofspaceforthelungtogrow.Thiscanbeprovidedexperimentallybytheprocessofuni-lateralPNX(Daneetal.,2013;Ravikumaretal.,2013,2014).Inthisprocedureinmice,thesingleleftlobeisremoved,leavingthefourrightlobesintact.Thisresultsintheregrowthor‘‘real-veolarization’’oftheremaininglungs.Newlobesarenotadded,butthereisadramaticincreaseinalveolarnumberthroughaddi-tionofnewseptaandarestorationinrespiratorycapacityintheremaininglungwithin2–3weeksforrodents.Newalveolartissueispreferentiallylaiddownattheperipheryofthelung(Fosteretal.,2002;MassaroandMassaro,1993),wheremechanicalstrainoftheseptaisaccentuatedduetoarelativelackofbron-chovascularsupport(Yilmazetal.,2011).EvidenceexistsforproliferationandchangesinthebehaviorofmultiplecelllineagesinthePNXmodel,includingbronchiolarcells,AEC2s,endothelialcells,andPdgfra+stromalcells(Chenetal.,2012b;Eisenhaueretal.,2013;Hoffmanetal.,2010;Hsia,2004;Thaneetal.,2014;Voswinckeletal.,2004).

EvidencepointstotheincreaseinproliferationafterPNXbeingregulatedbyacombinationofsignalingpathways,matrixcompositionandremodeling,especiallyrelatedtoelastin,andmechanicalforces.EarlystudiessuggestedthatEGFandFGFsignalingpromotepost-PNXalveolarregeneration(Kazaetal.,2000,2002),andthishasbeensupportedbylaterworkfocusingontheroleofpulmonarycapillaryendothelial(PCE)cellsinpro-ducingparacrinegrowthfactors(Dingetal.,2011).AfterPNX,thereisincreasedproliferationofPCEs,andtheiractivationofVEGFR-2andupregulationofFGFR1andMMP-14areneces-saryfortherestorationoflungmassandfunction.Despitetheseintriguingobservations,theprecisecellularmechanismsthatresultinthedramaticincreaseinalveolarnumberandlungca-pacityremainunclear.Detailedanatomicalstudies,includingscanningelectronmicroscopyofvascularcasts,suggestthatalveolarnumberincreasesbytheingrowthofcrestsoftissuecontainingcapillariesandstromalcellsfromthewallsofpreex-istingalveoli,aprocessthatmimicsnormalpostnataldevelop-ment(Figure2)(Ackermannetal.,2014).Elucidationofthemechanismsthatdriveregrowth,andhowtheyareattenuatedaslungcapacityisrestored,maysuggestpotentialtherapeutic

CellStemCell15,August7,2014ª2014ElsevierInc.131

interventionsforwhenrepairdoesnotoccurproperly.However,itwillfirstbeimportanttotranslatefindingswithsmallrodentmodelstolargeranimalmodelswithdifferentmechanicalandgrowthconditionsintheirlungs(Hsia,2004;Thaneetal.,2014).Aninjurymodelthatiswidelyusedinresearchisexposingmicetointratrachealbleomycin,achemotherapydrugthatcausesdamagetomultiplecelltypesinthealveoli,includingAEC1andendothelialcells.Oneoftheconsequencesofbleo-mycinexposureisatransientdisruptionofalveolararchitectureandfibrosis,togetherwiththeappearanceofmanymyofibro-blastsandAEC2swithabnormalmorphology(Figure5).LineagetracingstudiesinthisinjurymodelhaveshowntwomainsourcesofreparativeAEC2sandAEC1s.SomeofthemarederivedfromSftpc+AEC2sinthealveoli,whileothersarederivedfromdif-ferentiatedScgb1a1+Clubcellsintheterminalbronchioles(Barkauskasetal.,2013;Chenetal.,2012a;Rocketal.,2011a;Tropeaetal.,2012).Dual-positiveScgb1a1+/Sftpc+cellsthatresideintheBADJ(calledBASCs)alsocontributetothisphenotypicconversion.However,knowingwhethertheyaremoreefficientatthisthanneighboringClubcellswillrequirecell-specificlineagetracingtools.Significantly,ClubcellsdonotgiverisetoAEC2andAEC1cellsafterinjurytothealveolibyhy-peroxia.Thus,whileClubcellscanbeconsideredafacultativestemcellpopulationcapableofextensiveexpansionandpheno-typicflexibilityduringregeneration,thisdoesnotoccurinallinjury/repairmodels.

PathwaysthatPromoteLungRepairandRegenerationAmajorgoalinthefieldoflungrepairistodefinethemolecularpathwaysthatregulatetheactivation,expansion,anddifferenti-ationofstemandprogenitorlineagesinresponsetoinjuryandrepair.Onestrategyistofocusoninteractionsbetweenepithelialandmesenchymalcellsinthereparativenichebecausecross-talkbetweenthesepopulationsisknowntobeanessentialpro-cessforproperdevelopmentofthelung.Arecentexampleofthisapproachisastudyshowingthatthrombospondin-1,expressedbylungendothelialcells,controlsthedifferentiationofasubpop-ulationofSca1+self-renewinglungepithelialcells(Leeetal.,2014).Bmp4activatedexpressionofthrombospondin-1inlungendothelialcells,whichinturnregulatedthedifferentiationofSca1+lungepithelialcells.However,thesourceofBmp4intheadultlunginvivowasnotdeterminedinthesestudies(Leeetal.,2014).

Othersignalingpathways,suchasWntandNotch,knowntoplayimportantrolesinstemcellself-renewalanddifferentiationalsoplaykeyrolesinlungrepairandregeneration.Wntsignalingisanessentialregulatorofearlylungendodermspecificationanddevelopmentandhasbeenimplicatedinregulatingregenerativeresponses.UsingWntreporterlines,severalgroupshavedemonstratedactivationofcanonicalWntsignalinginvariouscompartmentsinthelungundergoingactiveregrowthandregeneration(AlAlametal.,2011;Aumilleretal.,2013;Flozaketal.,2010;Hashimotoetal.,2012;Zhangetal.,2008).Intheairwayepithelium,Wntsignalingisactivateduponsecretorycelldepletionbynaphthalenetreatment.ActivationofWntsignalingthroughlossofthecriticaltranscriptionfactorGata6leadstoexpansionoftheputativeBASCpopulationafternaph-thaleneinjury(Zhangetal.,2008).However,postnataldeletionofb-catenin(Ctnnb1)inthismodeldidnotinhibitsecretorycell

132CellStemCell15,August7,2014ª2014ElsevierInc.

Review

CellStemCell

regeneration,suggestingthatcanonicalWntsignalingisnotessentialinthismodeloflungregeneration(Zemkeetal.,2009).Wntsignalingisalsoprofibrotic,andincreasedWntsignalinghasbeendemonstratedinidiopathicfibrosislesions(Chilosietal.,2003).LossofCtnnb1inpostnatalalveolarepitheliumleadstoincreasedfibrosisandalveolarepithelialcelldeath(Tan-joreetal.,2013).Moreover,blockingWntsignalingpharmaco-logicallycanreducefibrosiscausedbybleomycintreatmentinmice,althoughwhetherthisisaneffectonalveolarepithelialormeseodermallineagesisunknown(Hendersonetal.,2010).Thus,theabilityofWntsignalingtopromoteproperrepairandregenerationafterinjuryiscontextdependentandchronicacti-vationcouldleadtoincreasedfibrosis.

TheroleforNotchsignalinginpromotingthesecretorycellphenotypeovertheciliatedcellphenotypeduringlungendo-dermdevelopment(Gusehetal.,2009;Tsaoetal.,2009)isreca-pitulatedintheresponseofBCsafterairwayinjury.NotchsignalingisessentialforBCself-renewalanddifferentiationofthesecellsintothesecretorycelllineageafterSO2-mediatedairwayepithelialinjury.IncreasedNotchactivationcanexpandthesecretorylineageattheexpenseoftheciliatedlineage(Rocketal.,2011a;Xingetal.,2012).Inrecentstudiesithasbeenfoundthatreactiveoxygenspecies(ROS)activateNotchsignalingbyactivatingNrf2(Pauletal.,2014).TheROS-NotchpathwayisimportantforBCself-renewalthroughregulationofcellproliferation,whichmaybecriticalformaintainingthecorrectnumberofBCsintheupperairwaysofmouseandhumanlungs.HistoneacetylationanddeacetylationactivitiesarealsoalteredinlungdiseasessuchasasthmaandCOPD.Asthmaticbronchialepitheliumdisplaysincreasedhistoneacetyltransfer-ase(HAT)activityanddecreasedhistonedeacetylase(HDAC)activity(Gunawardhanaetal.,2014).Corticosteroidtreatmentofasthmainducesacetylationandactivationofanti-inflamma-torygenesandrecruitmentofHDAC2complexestodeacetylateandsilenceproinflammatorygenes(Itoetal.,2002).COPDpa-tientbiopsiesshowacorrelationbetweendiseaseprogressionandlossofHDAC2expressionandactivity,butlowerHDACac-tivityisresistanttoanti-inflammatorysteroidtherapy(Itoetal.,2005).Inmice,geneticdeletionofHDAC1/2inthesecretoryepitheliumledtotheinductionoftumorsuppressorsRb1,p21/Cdkn1a,andp16/Ink4aafterinjury,whichresultedinreducedproliferationandapersistentlossofepithelialregener-ation(Wangetal.,2013b).Thislossinregenerationwaspersis-tent,indicatingthatHDAC1/2arerequiredforregenerationofse-cretoryepitheliumafternaphthalene-induceddepletioninthelung.HDACfunctionmayalsobeimportantforregulatingtheproperbalanceofAEC1andAEC2cellsduringdevelopmentandregeneration.Hopx,expressedbyAEC1sandbyalveolarprogenitors,recruitsHDAC2tonegativelyregulateAEC2-spe-cificgeneexpression(Yinetal.,2006).

HDACsarealsoknowntobindtononhistoneproteins.TheforkheadtranscriptionfactorsFoxp1/2/4areexpressedathighlevelsinthedevelopinglungepithelium(Luetal.,2002;Shuetal.,2007).TheinteractionbetweenFoxp1/2andHDACactivityplaysanimportantroleinlunginjuryandregeneration,asdemonstratedbytheresistanceofFoxp1/HDAC2doublehet-erozygousanimalstohyperoxicinjurymediatedbytheregula-tionofthecytoprotectivecytokineIL-6(Chokasetal.,2010).ThecombinedlossofFoxp1/4inthepostnatalScgb1a1+

CellReview

StemCell

secretorylineageresultsinspontaneousdifferentiationofScgb1a1+cellsintoMuc5a/c+gobletcells(Lietal.,2012).Importantly,thisabnormalsecretoryepitheliumlackingFoxp1/4isunabletoregenerateafternaphthalene-inducedinjury,sug-gestingthatacquisitionofagoblet-likephenotypeimpairsairwaysecretorycellregeneration(Lietal.,2012).

DevelopmentalstudiesinthelunghaverevealedcriticalrolesformultiplespeciesofnoncodingRNAs,includingmiRNAsandlongnoncodingRNAs(lncRNAs),inepithelialbranchinganddifferentiation.TwomiRNAclustersplayimportantrolesinlungepithelialendodermproliferationanddifferentiation.miR17–92andmiR302–367arebothhighlyexpressedduringearlylungendodermdevelopmentbutaresignificantlydownre-gulatedorextinguishedbybirth(Tianetal.,2011;Venturaetal.,2008).SeveralofthemiRNAsinthesetwoclusterssharecom-monseedsequences.OverexpressionofthesemiRNAclustersresultsinincreasedlungepithelialproliferationbutinhibitionofdifferentiationwithincreasedexpressionofprogenitormarkers(Luetal.,2007;Tianetal.,2011).ThesedatasuggestthatthesemiRNAspromotetheearlylungprogenitorphenotypethatischaracterizedbyahighlyproliferative,undifferentiatedstate.SincemiRNAscanbeusedassmallmoleculetherapeu-tics,suchcapabilitiescouldbeharnessedtopromotelungregenerationviatherapeuticuseofmiRNAmimicsorantimiRs.ArecentstudyidentifiedhundredsoflncRNAsexpressedinthedevelopingandpostnatallung(Herrigesetal.,2014).Asignifi-cantsubsetoftheselncRNAsislocatednearprotein-codinggenesincludingimportanttranscriptionfactorssuchasNkx2-1andFoxf1.OneoftheselncRNAs,calledNANCI,regulatesNkx2-1andisessentialforitsexpression,aswellasthatoftargetsofNkx2-1functionincludingSftpcandScgb1a1.GiventheimportantroleforNkx2-1inlungdevelopmentandpostnatalhomeostasis,lncRNAssuchasNANCIlikelyplayasimilarlyimportantroleinpostnatallunghomeostasisandrepair.

ImportanceoftheImmuneResponsetoLungInjuryRepair

Thelungcontainsanimportantpopulationofmesodermalcellsthatarisefromthehematopoeiticlineagebutresideforsignifi-cantperiodswithinthelungparenchymaandwithinalveoli.Sig-nificantevidenceisemergingforacomplexorchestrationbythesecellsduringrepairandregeneration.Recentlive-imagingapproacheshavehighlightedresidentpopulationsofneutrophilsandmonocytesatsitesofalveolarinjuryandhighlylocalizeddamageinresponsetoeitherischemiareperfusionorTLRsignaling(Kreiseletal.,2010;Looneyetal.,2011).Whileimme-diatedamageislikelyaproductofneutrophilextravasationandperhapsmyeloid-mediatedbreakdownofalveolarepithe-lium,theimmuneresponseisalsolikelyprotective.Forexample,alveolarCD11c+cells(macrophagesanddendriticcells)utilizeConnexin43(Cx43)-mediatedtightjunctionstocommunicatewiththeepitheliumandparticipateincalciumwavesthatpropa-gateacrossdamagedepithelium.InteractionsofsomeCD11ccellsinthiswayareapparentlyprotectivebecauseCD11c-drivendeletionofCx43resultedinaugmenteddamageinresponsetoTLRsignals(Westphalenetal.,2014).Itremainstobedeterminedwhethermyeloidcellswithamore‘‘M2’’pheno-typeassociatedwithTGFbandIL-10productionhavespecific

rolesininjury/repair,andindeedwhethermacrophagefunctioninthelungfallsunderthecontroloftheadaptiveimmuneresponse.EarlydatausingmicethatarepartiallydepletedforregulatoryTcellsindicatedthatthesecellsregulatedtheresolu-tionoflunginjury,butthemechanismandextentofthisremainsunclear(D’Alessioetal.,2009).

BioengineeringLungTissue

Thecurrentclinicalapproachforreplacementofdiseasedlungtissueisallogeneiclungtransplantation.However,thisproce-dureremainslimitedduetoarelativeshortageofdonororgans,immunologicrejectionbytherecipient,andcomplicationsduetointenseimmunosuppressionnecessarytoavoidrejection(Lauetal.,2004).IntheUnitedStates,5-yearpatientsurvivalafterlungtransplantationisapproximately50%,comparedtoabout70%forliver(Wangetal.,2014).

EngineeredTrachealReplacements

Engineeredairways(tracheaandbronchi)havebeeninuseforoveradecade,thefirstbeingdesignedtorepairatracheobron-chialanastomosisaftersurgeryformalignancy(Macchiarinietal.,2004).Sincethisinitialreport,fullyengineeredtrachealsegmentshavebeenmadeusingcadavericdonordecellularizedmatrices,uponwhichrecipient-derivedcellswereculturedtogenerateanautologousairwaygrafttorepairtracheobronchialmalacia(Macchiarinietal.,2008).Syntheticscaffoldshavealsobeenexploredforuseastrachealreplacements.Clinicaltrialsofsolidprostheseshaveincludedmaterialssuchasstainlesssteel(Cottonetal.,1952),steelcoil(Beattieetal.,1956),silicone(Nevilleetal.,1990),polyethylene(Clagettetal.,1952),Teflon(EkestromandCarlens,1959),andhydroxylapatite(Hiranoetal.,1989).However,mostsolidprostheseseventuallyfailtobecomewellintegratedwiththesurroundingtissueandcauseproblemswithinfection,dislodgement,migration,andobstruc-tionwithgranulationtissue(Grillo,2002).Whole-LungEngineering

Morerecently,whole-lungengineeringhasbeenattempted,albeitinanimalmodelsonly(Ottetal.,2010;Petersenetal.,2010).Theseapproachesmakeuseofwhole-lungdecellulariza-tionstrategies(Priceetal.,2010)followedbyreseedingairwaysandvesselswithprimaryepithelialandvascularendothelialcells,respectively,fromsyngeneicanimals.Afterculturewithinabioreactor,theorganswerereimplantedintosyngeneicrecipi-entsanddemonstratedefficientgasexchange(Ottetal.,2010;Petersenetal.,2010).However,thelungsultimatelyfailafterseveralhourstodaysduetoacombinationofintravascularcoagulation(likelyduetoincompleteendothelializationofthede-cellularizedvasculature)anddefectsinbarrierfunctionleadingtoexudationoffluidintotheairways.

Morerecently,strategiesfordecellularizingwholelungsfrompigs,nonhumanprimates(Bonvillainetal.,2013),andhumans(Boothetal.,2012)havebeenestablishedthatpavethewayforrecellularizationstudies(Gilpinetal.,2013;Nicholsetal.,2013;Wagneretal.,2014).Althoughthesescaffoldsprovideanatomicaccesstotheairwayandvascularcompartments,onekeychallengewillbedeliveryofmesenchymalpopulationstotheinterstitiumandparticularlythedelicatesepta.Regionallyspecificmesenchymalpopulations,coupledwithdistinctextra-cellularmatrixcues(Hinenoyaetal.,2008;Sannes,1984),maysignificantlyenhancetheoutcomesofepithelialrepopulationof

CellStemCell15,August7,2014ª2014ElsevierInc.133

decellularizedmatrices.However,thecomplexityofhumanlungwillmakethisadauntingtaskformanyyearstocome.Conclusions

Muchprogresshasbeenmadeinrecentyearsindefiningthecelllineagesthatcontributetowardlungrepairandregeneration.Thefocusofmostofthisworkhasbeenontheepithelium,givenitsessentialfunctioninthelung.However,othercellularconstitu-ents,includingthelymphaticandvascularsystemsaswellastheimmunesystem,almostcertainlyplayimportantrolesinrepairandregeneration.Determiningtheircontributionisanimportantareaoffutureresearch.

Recentevidencesuggeststhatlungepitheliallineagesthatun-dergolong-termself-renewalanddifferentiationarethemselvesfunctionallydifferentiatedcells.ExamplesareScgb1a1+ClubcellsandSftpc+AEC2s.Moreover,theseandotherepithelialcellscanundergophenotypicswitchesinresponsetotissuedamageandtheresponsecanvaryaccordingtothetypeandseverityofinjury.Theseconceptshavehadanimportantimpactonourunderstandingofstem/progenitorbiology,notonlyinthelungbutinothertissuesaswell(BlanpainandFuchs,2014).Howthisplasticityisregulatedisanexcitingareaofinquiry.

Theidentificationofstem/progenitorlineagesandactivityintheadultlunghasproceededmuchfasterthanourunderstand-ingofthemolecularpathwaysthatregulatetheircellbehavior.Theconceptthatdevelopmentalpathwaysarereactivatedandplayimportantrolesinlungrepairandregenerationrequiresadditionaltesting,especiallyinmorephysiologicallyorclinicallyrelevantmodelssuchasinfluenzainjury.Thesestudieswillrequireadditionalinformationonhowstructuresareformedinthelung,inparticulartheprocessofalveologenesis,whichisstillpoorlyunderstood.Thisisatopicthatwillgreatlybenefitfromadditionalresearchintothedevelopmentandmaturationofthelung.Importantly,theadventofnewexvivomodelsoflungstemcellactivitysuchastracheospheresandalveolospheresshouldallowfortestingoffactorsthatcanpromoteeitherstem/progenitorself-renewalordifferentiation.

Newtechniquessuchasafunctionalengraftmentassayarealsocriticalfortestingthetrueabilityofdifferentstem/progenitorlineagesthathavebeenandwillcontinuetobeidentifiedinthelung.Thiswillentailabetterunderstandingofthenichesthatlungstem/progenitorcellsresidein,whichwillincludedefiningtheroleofextracellularmatrixandanimprovedunderstandingofcell-cellsignalingmechanismsimportantforregionalcellbehaviorafterinjuryorindisease.Alloftheseoutstandingissueswillrequirearenewedcommitmenttobasicscienceaswellastheongoingpushtobetterunderstandhowanimalmodelscanbeusedtounderstandhumanlungdiseaseandregeneration.Muchhasbeengainedfromaninvestmentintobasiclungdevel-opmentandthereremainsmuchstilltobediscovered.Onlybycombiningthestrengthofsuchbasicstudiesalongwithexplora-tionofhowthehumanlungrespondstoinjuryandinsultcanthefielddevelopnewstrategiesandtherapiesforcombatinghumanlungdisease.

ACKNOWLEDGMENTS

Theauthorsapologizefortheomissionofanyreferencesduetothespacecon-straintsofthisReviewandwishtothankmembersoftheirlaboratoriesforinput

134CellStemCell15,August7,2014ª2014ElsevierInc.

Review

CellStemCell

andhelpfulcriticismofthisReview.TheauthorswishtoacknowledgetheimportantsupportfromtheNationalInstitutesofHealthincludingtheLungRepairandRegenerationConsortium.REFERENCES

Ackermann,M.,Houdek,J.P.,Gibney,B.C.,Ysasi,A.,Wagner,W.,Belle,J.,Schittny,J.C.,Enzmann,F.,Tsuda,A.,Mentzer,S.J.,etal.(2014).Sproutingandintussusceptiveangiogenesisinpostpneumonectomylunggrowth:mech-anismsofalveolarneovascularization.Angiogenesis17,541–551.

AlAlam,D.,Green,M.,TabatabaiIrani,R.,Parsa,S.,Danopoulos,S.,Sala,F.G.,Branch,J.,ElAgha,E.,Tiozzo,C.,Voswinckel,R.,etal.(2011).Contrast-ingexpressionofcanonicalWntsignalingreportersTOPGAL,BATGALandAxin2(LacZ)duringmurinelungdevelopmentandrepair.PLoSONE6,e23139.Alanis,D.M.,Chang,D.R.,Akiyama,H.,Krasnow,M.A.,andChen,J.(2014).Twonesteddevelopmentalwavesdemarcateacompartmentboundaryinthemouselung.Nat.Commun.5,3923.

Aumiller,V.,Balsara,N.,Wilhelm,J.,Gu

¨nther,A.,andKo¨nigshoff,M.(2013).WNT/b-cateninsignalinginducesIL-1bexpressionbyalveolarepithelialcellsinpulmonaryfibrosis.Am.J.Respir.CellMol.Biol.49,96–104.

Barkauskas,C.E.,Cronce,M.J.,Rackley,C.R.,Bowie,E.J.,Keene,D.R.,Stripp,B.R.,Randell,S.H.,Noble,P.W.,andHogan,B.L.(2013).Type2alve-olarcellsarestemcellsinadultlung.J.Clin.Invest.123,3025–3036.Beattie,E.J.,Jr.,Blades,B.,andKeshishian,J.M.(1956).Trachealreconstruc-tion.TheJournalofThoracicSurgery32,707–725,discussion,725–707.Blackwell,T.S.,Hipps,A.N.,Yamamoto,Y.,Han,W.,Barham,W.J.,Ostrow-ski,M.C.,Yull,F.E.,andPrince,L.S.(2011).NF-kBsignalinginfetallungmac-rophagesdisruptsairwaymorphogenesis.J.Immunol.187,2740–2747.Blanpain,C.,andFuchs,E.(2014).Stemcellplasticity.Plasticityofepithelialstemcellsintissueregeneration.Science344,1242281.

Blanpain,C.,andSimons,B.D.(2013).Unravellingstemcelldynamicsbyline-agetracing.Nat.Rev.Mol.CellBiol.14,489–502.

Bonvillain,R.W.,Scarritt,M.E.,Pashos,N.C.,Mayeux,J.P.,Meshberger,C.L.,Betancourt,A.M.,Sullivan,D.E.,andBunnell,B.A.(2013).Nonhumanprimatelungdecellularizationandrecellularizationusingaspecializedlarge-organbioreactor.JournalofVisualizedExperiments:JoVE,e50825.

Booth,A.J.,Hadley,R.,Cornett,A.M.,Dreffs,A.A.,Matthes,S.A.,Tsui,J.L.,Weiss,K.,Horowitz,J.C.,Fiore,V.F.,Barker,T.H.,etal.(2012).Acellularnormalandfibrotichumanlungmatricesasaculturesystemforinvitroinves-tigation.Am.J.Respir.Crit.CareMed.186,866–876.

Bostro

¨m,H.,Willetts,K.,Pekny,M.,Leve´en,P.,Lindahl,P.,Hedstrand,H.,Pe-kna,M.,Hellstro

¨m,M.,Gebre-Medhin,S.,Schalling,M.,etal.(1996).PDGF-Asignalingisacriticaleventinlungalveolarmyofibroblastdevelopmentandalveogenesis.Cell85,863–873.

Burri,P.H.,Hlushchuk,R.,andDjonov,V.(2004).Intussusceptiveangiogen-esis:itsemergence,itscharacteristics,anditssignificance.Developmentaldynamics:anofficialpublicationoftheAmericanAssociationofAnatomists231,474–488.

Cardoso,W.V.,andWhitsett,J.A.(2008).Residentcellularcomponentsofthelung:developmentalaspects.Proc.Am.Thorac.Soc.5,767–771.

Chang,D.R.,MartinezAlanis,D.,Miller,R.K.,Ji,H.,Akiyama,H.,McCrea,P.D.,andChen,J.(2013).Lungepithelialbranchingprogramantagonizesalve-olardifferentiation.Proc.Natl.Acad.Sci.USA110,18042–18051.

Chapman,H.A.,Li,X.,Alexander,J.P.,Brumwell,A.,Lorizio,W.,Tan,K.,Son-nenberg,A.,Wei,Y.,andVu,T.H.(2011).Integrina6b4identifiesanadultdistallung121,epithelial2855–2862.

populationwithregenerativepotentialinmice.J.Clin.Invest.Chen,G.,Korfhagen,T.R.,Xu,Y.,Kitzmiller,J.,Wert,S.E.,Maeda,Y.,Gregor-ieff,A.,Clevers,H.,andWhitsett,J.A.(2009).SPDEFisrequiredformousepul-monarygobletcelldifferentiationandregulatesanetworkofgenesassociatedwithmucusproduction.J.Clin.Invest.119,2914–2924.

Chen,H.,Matsumoto,K.,Brockway,B.L.,Rackley,C.R.,Liang,J.,Lee,J.H.,Jiang,D.,Noble,P.W.,Randell,S.H.,Kim,C.F.,andStripp,B.R.(2012a).Airwayepithelialprogenitorsareregionspecificandshowdifferentialre-sponsestobleomycin-inducedlunginjury.StemCells30,1948–1960.

CellReview

StemCell

Chen,L.,Acciani,T.,LeCras,T.,Lutzko,C.,andPerl,A.K.(2012b).Dynamicregulationofplatelet-derivedgrowthfactorreceptoraexpressioninalveolarfibroblastsduringrealveolarization.Am.J.Respir.CellMol.Biol.47,517–527.Chilosi,M.,Poletti,V.,Zamo

`,A.,Lestani,M.,Montagna,L.,Piccoli,P.,Pedron,S.,Bertaso,M.,Scarpa,A.,Murer,B.,etal.(2003).AberrantWnt/beta-cateninpathwayactivationinidiopathicpulmonaryfibrosis.Am.J.Pathol.162,1495–1502.

Chokas,A.L.,Trivedi,C.M.,Lu,M.M.,Tucker,P.W.,Li,S.,Epstein,J.A.,andMorrisey,E.E.(2010).Foxp1/2/4-NuRDinteractionsregulategeneexpressionandepithelialinjuryresponseinthelungviaregulationofinterleukin-6.J.Biol.Chem.285,13304–13313.

Clagett,O.T.,Moersch,H.J.,andGrindlay,J.H.(1952).Intrathoracictrachealtumors:developmentofsurgicaltechnicsfortheirremoval.Ann.Surg.136,520–532.

Cole,B.B.,Smith,R.W.,Jenkins,K.M.,Graham,B.B.,Reynolds,P.R.,andReynolds,S.D.(2010).TrachealBasalcells:afacultativeprogenitorcellpool.Am.J.Pathol.177,362–376.

Cotton,B.H.,Hills,B.,andPenido,J.R.(1952).Resectionofthetracheaforcarcinoma;reportoftwocases.J.Thorac.Surg.24,231–245.

D’Alessio,F.R.,Tsushima,K.,Aggarwal,N.R.,West,E.E.,Willett,M.H.,Britos,M.F.,Pipeling,M.R.,Brower,R.G.,Tuder,R.M.,McDyer,J.F.,andKing,L.S.(2009).CD4+CD25+Foxp3+Tregsresolveexperimentallunginjuryinmiceandarepresentinhumanswithacutelunginjury.J.Clin.Invest.119,2898–2913.

Dane,D.M.,Yilmaz,C.,Estrera,A.S.,andHsia,C.C.(2013).Separatinginvivomechanicalstimuliforpostpneumonectomycompensation:physiologicalassessment.J.Appl.Physiol.114,99–106.

Danto,S.I.,Shannon,J.M.,Borok,Z.,Zabski,S.M.,andCrandall,E.D.(1995).Reversibletransdifferentiationofalveolarepithelialcells.Am.J.Respir.CellMol.Biol.12,497–502.

Desai,T.J.,Brownfield,D.G.,andKrasnow,M.A.(2014).Alveolarprogenitorandstemcellsinlungdevelopment,renewalandcancer.Nature507,190–194.Ding,B.S.,Nolan,D.J.,Guo,P.,Babazadeh,A.O.,Cao,Z.,Rosenwaks,Z.,Crystal,R.G.,Simons,M.,Sato,T.N.,Worgall,S.,etal.(2011).Endothelial-derivedangiocrinesignalsinduceandsustainregenerativelungalveolariza-tion.Cell147,539–553.

Dixit,R.,Ai,X.,andFine,A.(2013).Derivationoflungmesenchymallineagesfromthefetalmesotheliumrequireshedgehogsignalingformesothelialcellen-try.Development140,4398–4406.

Eisenhauer,P.,Earle,B.,Loi,R.,Sueblinvong,V.,Goodwin,M.,Allen,G.B.,Lundblad,L.,Mazan,M.R.,Hoffman,A.M.,andWeiss,D.J.(2013).Endoge-nousdistalairwayprogenitorcells,lungmechanics,anddisproportionatelobargrowthfollowinglong-termpostpneumonectomyinmice.StemCells31,1330–1339.

Ekestrom,S.,andCarlens,E.(1959).Teflonprosthesisintrachealdefectsinman.ActachirurgicaScandinavicaSupplementum245(Suppl),71–75.ElAgha,E.,Herold,S.,AlAlam,D.,Quantius,J.,MacKenzie,B.,Carraro,G.,Moiseenko,A.,Chao,C.M.,Minoo,P.,Seeger,W.,andBellusci,S.(2014).Fgf10-positivecellsrepresentaprogenitorcellpopulationduringlungdevel-opmentandpostnatally.Development141,296–306.

Epaud,R.,Aubey,F.,Xu,J.,Chaker,Z.,Clemessy,M.,Dautin,A.,Ahamed,K.,

Bonora,M.,Hoyeau,N.,Fle

´jou,J.F.,etal.(2012).Knockoutofinsulin-likegrowthfactor-1receptorimpairsdistallungmorphogenesis.PLoSONE7,e48071.

Evans,M.J.,Cabral,L.J.,Stephens,R.J.,andFreeman,G.(1973).RenewalofalveolarepitheliumintheratfollowingexposuretoNO2.Am.J.Pathol.70,175–198.

Evans,M.J.,Cabral,L.J.,Stephens,R.J.,andFreeman,G.(1975).Transforma-tionofalveolartype2cellstotype1cellsfollowingexposuretoNO2.Exp.Mol.Pathol.22,142–150.

Flozak,A.S.,Lam,A.P.,Russell,S.,Jain,M.,Peled,O.N.,Sheppard,K.A.,Beri,R.,Mutlu,G.M.,Budinger,G.R.,andGottardi,C.J.(2010).Beta-catenin/T-cellfactorsignalingisactivatedduringlunginjuryandpromotesthesurvivalandmigrationofalveolarepithelialcells.J.Biol.Chem.285,3157–3167.

Foster,D.J.,Yan,X.,Bellotto,D.J.,Moe,O.W.,Hagler,H.K.,Estrera,A.S.,andHsia,C.C.W.(2002).Expressionofepidermalgrowthfactorandsurfactantproteinsduringpostnatalandcompensatorylunggrowth.Am.J.Physiol.LungCell.Mol.Physiol.283,L981–L990.

Fuhrmann,S.,Zou,C.,andLevine,E.M.(2014).Retinalpigmentepitheliumdevelopment,plasticity,andtissuehomeostasis.Exp.EyeRes.123,141–150.Ghaedi,M.,Calle,E.A.,Mendez,J.J.,Gard,A.L.,Balestrini,J.,Booth,A.,Bove,P.F.,Gui,L.,White,E.S.,andNiklason,L.E.(2013).HumaniPScell-derivedalveolarepitheliumrepopulateslungextracellularmatrix.J.Clin.Invest.123,4950–4962.

Giangreco,A.,Reynolds,S.D.,andStripp,B.R.(2002).Terminalbronchiolesharborauniqueairwaystemcellpopulationthatlocalizestothebronchoalveo-larductjunction.Am.J.Pathol.161,173–182.

Gilpin,S.E.,Guyette,J.P.,Gonzalez,G.,Ren,X.,Asara,J.M.,Mathisen,D.J.,Vacanti,J.P.,andOtt,H.C.(2013).Perfusiondecellularizationofhumanandporcine33,298–308.

lungs:Bringingthematrixtoclinicalscale.JHeartLungTransplant.Grillo,73,1995–2004.

H.C.(2002).Trachealreplacement:acriticalreview.Ann.Thorac.Surg.Guha,A.,Vasconcelos,M.,Cai,Y.,Yoneda,M.,Hinds,A.,Qian,J.,Li,G.,Dickel,L.,Johnson,J.E.,Kimura,S.,etal.(2012).Neuroepithelialbodymicro-environmentisanicheforadistinctsubsetofClara-likeprecursorsinthedevelopingairways.Proc.Natl.Acad.Sci.USA109,12592–12597.

Guha,A.,Vasconcelos,M.,Zhao,R.,Gower,A.C.,Rajagopal,J.,andCardoso,W.V.(2014).AnalysisofNotchsignaling-dependentgeneexpressionindevel-opingairwaysrevealsdiversityofClaracells.PLoSONE9,e88848.

Gunawardhana,L.P.,Gibson,P.G.,Simpson,J.L.,Powell,H.,andBaines,K.J.(2014).Activityandexpressionofhistoneacetylasesanddeacetylasesinin-flammatoryphenotypesofasthma.Clin.Exp.Allergy44,47–57.

Guseh,J.S.,Bores,S.A.,Stanger,B.Z.,Zhou,Q.,Anderson,W.J.,Melton,D.A.,andRajagopal,J.(2009).Notchsignalingpromotesairwaymucousmetaplasiaandinhibitsalveolardevelopment.Development136,1751–1759.Hashimoto,S.,Chen,H.,Que,J.,Brockway,B.L.,Drake,J.A.,Snyder,J.C.,Randell,S.H.,andStripp,B.R.(2012).b-Catenin-SOX2signalingregulatesthefateofdevelopingairwayepithelium.J.CellSci.125,932–942.

Henderson,W.R.,Jr.,Chi,E.Y.,Ye,X.,Nguyen,C.,Tien,Y.T.,Zhou,B.,Borok,Z.,Knight,D.A.,andKahn,M.(2010).InhibitionofWnt/beta-catenin/CREBbindingprotein(CBP)signalingreversespulmonaryfibrosis.Proc.Natl.Acad.Sci.USA107,14309–14314.

Herriges,M.,andMorrisey,E.E.(2014).Lungdevelopment:orchestratingthegenerationandregenerationofacomplexorgan.Development141,502–513.Herriges,J.C.,Yi,L.,Hines,E.A.,Harvey,J.F.,Xu,G.,Gray,P.A.,Ma,Q.,andSun,X.(2012).Genome-scalestudyoftranscriptionfactorexpressioninthebranchingmouselung.Developmentaldynamics:anofficialpublicationoftheAmericanAssociationofAnatomists241,1432–1453.

Herriges,M.J.,Swarr,D.T.,Morley,M.P.,Rathi,K.S.,Peng,T.,Stewart,K.M.,andMorrisey,E.E.(2014).LongnoncodingRNAsarespatiallycorrelatedwithtranscriptionfactorsandregulatelungdevelopment.GenesDev.28,1363–1379.

Hinenoya,N.,Naito,I.,Momota,R.,Sado,Y.,Kumagishi,K.,Ninomiya,Y.,andOhtsuka,A.(2008).TypeIVcollagenalphachainsofthebasementmembraneintheratbronchioalveolartransitionalsegment.Arch.HistolCytol.71,185–194.

Hirano,M.,Yoshida,T.,andSakaguchi,S.(1989).Hydroxylapatiteforlaryng-otrachealframeworkreconstruction.Ann.Otol.Rhinol.Laryngol.98,713–717.Hoffman,A.M.,Shifren,A.,Mazan,M.R.,Gruntman,A.M.,Lascola,K.M.,Nolen-Walston,R.D.,Kim,C.F.,Tsai,L.,Pierce,R.A.,Mecham,R.P.,andIn-genito,E.P.(2010).Matrixmodulationofcompensatorylungregrowthandpro-genitorcellproliferationinmice.Am.J.Physiol.LungCell.Mol.Physiol.298,L158–L168.

Hong,K.U.,Reynolds,S.D.,Watkins,S.,Fuchs,E.,andStripp,B.R.(2004).Basalcellsareamultipotentprogenitorcapableofrenewingthebronchialepithelium.Am.J.Pathol.164,577–588.

CellStemCell15,August7,2014ª2014ElsevierInc.135

Hsia,C.C.(2004).Signalsandmechanismsofcompensatorylunggrowth.J.Appl.Physiol.97,1992–1998.

Hsia,C.C.W.,Berberich,M.A.,Driscoll,B.,Laubach,V.E.,Lillehei,C.W.,Mas-saro,D.J.,Perkett,E.A.,Pierce,R.A.,Rannels,D.E.,Ryan,R.M.,etal.;adhocStatementCommittee,AmericanThoracicSociety(2004).Mechanismsandlimitsofinducedpostnatallunggrowth.Am.J.Respir.Crit.CareMed.170,319–343.

Huang,S.X.,Islam,M.N.,O’Neill,J.,Hu,Z.,Yang,Y.G.,Chen,Y.W.,Mumau,M.,Green,M.D.,Vunjak-Novakovic,G.,Bhattacharya,J.,andSnoeck,H.W.(2014).Efficientgenerationoflungandairwayepithelialcellsfromhumanpluripotentstemcells.Nat.Biotechnol.32,84–91.

Ito,K.,Caramori,G.,Lim,S.,Oates,T.,Chung,K.F.,Barnes,P.J.,andAdcock,I.M.(2002).Expressionandactivityofhistonedeacetylasesinhumanasth-maticairways.Am.J.Respir.Crit.CareMed.166,392–396.

Ito,K.,Ito,M.,Elliott,W.M.,Cosio,B.,Caramori,G.,Kon,O.M.,Barczyk,A.,Hayashi,S.,Adcock,I.M.,Hogg,J.C.,andBarnes,P.J.(2005).Decreasedhis-tonedeacetylaseactivityinchronicobstructivepulmonarydisease.N.Engl.J.Med.352,1967–1976.

Kaplan,H.P.,Robinson,F.R.,Kapanci,Y.,andWeibel,E.R.(1969).Pathogen-esisandreversibilityofthepulmonarylesionsofoxygentoxicityinmonkeys.I.Clinicalandlightmicroscopicstudies.Laboratoryinvestigation;ajournaloftechnicalmethodsandpathology20,94–100.

Kaza,A.K.,Laubach,V.E.,Kern,J.A.,Long,S.M.,Fiser,S.M.,Tepper,J.A.,Nguyen,R.P.,Shockey,K.S.,Tribble,C.G.,andKron,I.L.(2000).Epidermalgrowthfactoraugmentspostpneumonectomylunggrowth.J.Thorac.Cardio-vasc.Surg.120,916–921.

Kaza,A.K.,Kron,I.L.,Leuwerke,S.M.,Tribble,C.G.,andLaubach,V.E.(2002).Keratinocytegrowthfactorenhancespost-pneumonectomylunggrowthbyalveolarproliferation.Circulation106(Suppl1),I120–I124.

Kim,C.F.,Jackson,E.L.,Woolfenden,A.E.,Lawrence,S.,Babar,I.,Vogel,S.,Crowley,D.,Bronson,R.T.,andJacks,T.(2005).Identificationofbronchioal-veolarstemcellsinnormallungandlungcancer.Cell121,823–835.Kreisel,D.,Nava,R.G.,Li,W.,Zinselmeyer,B.H.,Wang,B.,Lai,J.,Pless,R.,Gelman,A.E.,Krupnick,A.S.,andMiller,M.J.(2010).Invivotwo-photonimag-ingrevealsmonocyte-dependentneutrophilextravasationduringpulmonaryinflammation.Proc.Natl.Acad.Sci.USA107,18073–18078.

Kumar,P.A.,Hu,Y.,Yamamoto,Y.,Hoe,N.B.,Wei,T.S.,Mu,D.,Sun,Y.,Joo,L.S.,Dagher,R.,Zielonka,E.M.,etal.(2011).Distalairwaystemcellsyieldal-veoliinvitroandduringlungregenerationfollowingH1N1influenzainfection.Cell147,525–538.

Lau,C.L.,Patterson,G.A.,andPalmer,S.M.(2004).Criticalcareaspectsoflungtransplantation.J.IntensiveCareMed.19,83–104.

Lee,J.H.,Bhang,D.H.,Beede,A.,Huang,T.L.,Stripp,B.R.,Bloch,K.D.,Wagers,A.J.,Tseng,Y.H.,Ryeom,S.,andKim,C.F.(2014).Lungstemcelldif-ferentiationinmicedirectedbyendothelialcellsviaaBMP4-NFATc1-throm-bospondin-1axis.Cell156,440–455.

Li,S.,Wang,Y.,Zhang,Y.,Lu,M.M.,DeMayo,F.J.,Dekker,J.D.,Tucker,P.W.,andMorrisey,E.E.(2012).Foxp1/4controlepithelialcellfateduringlungdevel-opmentandregenerationthroughregulationofanteriorgradient2.Develop-ment139,2500–2509.

Liu,J.Y.,Nettesheim,P.,andRandell,S.H.(1994).Growthanddifferentiationoftrachealepithelialprogenitorcells.Am.J.Physiol.266,L296–L307.Longmire,T.A.,Ikonomou,L.,Hawkins,F.,Christodoulou,C.,Cao,Y.,Jean,J.C.,Kwok,L.W.,Mou,H.,Rajagopal,J.,Shen,S.S.,etal.(2012).Efficientderivationofpurifiedlungandthyroidprogenitorsfromembryonicstemcells.CellStemCell10,398–411.

Looney,M.R.,Thornton,E.E.,Sen,D.,Lamm,W.J.,Glenny,R.W.,andKrum-mel,M.F.(2011).Stabilizedimagingofimmunesurveillanceinthemouselung.Nat.Methods8,91–96.

Lu,M.M.,Li,S.,Yang,H.,andMorrisey,E.E.(2002).Foxp4:anovelmemberoftheFoxpsubfamilyofwinged-helixgenesco-expressedwithFoxp1andFoxp2inpulmonaryandguttissues.Mech.Dev.119(Suppl1),S197–S202.Lu,Y.,Thomson,J.M.,Wong,H.Y.,Hammond,S.M.,andHogan,B.L.(2007).Transgenicover-expressionofthemicroRNAmiR-17-92clusterpromotes

136CellStemCell15,August7,2014ª2014ElsevierInc.

Review

CellStemCell

proliferationandinhibitsdifferentiationoflungepithelialprogenitorcells.Dev.Biol.310,442–453.

Lucchetta,E.M.,andOhlstein,B.(2012).TheDrosophilamidgut:amodelforstemcelldriventissueregeneration.Wileyinterdisciplinaryreviews.Dev.Biol.1,781–788.

Macchiarini,P.,Walles,T.,Biancosino,C.,andMertsching,H.(2004).Firsthu-mantransplantationofabioengineeredairwaytissue.J.Thorac.Cardiovasc.Surg.128,638–641.

Macchiarini,P.,Jungebluth,P.,Go,T.,Asnaghi,M.A.,Rees,L.E.,Cogan,T.A.,Dodson,A.,Martorell,J.,Bellini,S.,Parnigotto,P.P.,etal.(2008).Clinicaltransplantationofatissue-engineeredairway.Lancet372,2023–2030.Massaro,G.D.,andMassaro,D.(1993).Postnatallunggrowth:evidencethatthegas-exchangeregiongrowsfastestattheperiphery.Am.J.Physiol.265,L319–L322.

Metzger,R.J.,Klein,O.D.,Martin,G.R.,andKrasnow,M.A.(2008).Thebranchingprogrammeofmouselungdevelopment.Nature453,745–750.Moreno-Barriuso,N.,Lopez-Malpartida,A.V.,dePablo,F.,andPichel,J.G.(2006).AlterationsinalveolarepitheliumdifferentiationandvasculogenesisinlungsofLIF/IGF-Idoubledeficientembryos.Developmentaldynamics:anofficialpublicationoftheAmericanAssociationofAnatomists235,2040–2050.Morimoto,M.,Nishinakamura,R.,Saga,Y.,andKopan,R.(2012).Differentas-sembliesofNotchreceptorscoordinatethedistributionofthemajorbronchialClara,ciliatedandneuroendocrinecells.Development139,4365–4373.Morrisey,E.E.,andHogan,B.L.(2010).Preparingforthefirstbreath:geneticandcellularmechanismsinlungdevelopment.Dev.Cell18,8–23.

Mou,H.,Zhao,R.,Sherwood,R.,Ahfeldt,T.,Lapey,A.,Wain,J.,Sicilian,L.,Izvolsky,K.,Musunuru,K.,Cowan,C.,andRajagopal,J.(2012).GenerationofmultipotentlungandairwayprogenitorsfrommouseESCsandpatient-spe-cificcysticfibrosisiPSCs.CellStemCell10,385–397.

Neville,W.E.,Bolanowski,J.P.,andKotia,G.G.(1990).Clinicalexperiencewiththesiliconetrachealprosthesis.JThorac.Cardiovasc.Surg.99,604–612,discussion612–603.

Nichols,J.E.E.,Niles,J.,Riddle,M.,Vargas,G.,Schilagard,T.,Ma,L.,Edward,K.,Lafrancesca,S.,Sakamoto,J.,Vega,S.,etal.(2013).ProductionandAssessmentofDecellularizedPigandHumanLungScaffolds.TissueEng.PartA.19,2045–2062.

Noble,P.W.,Barkauskas,C.E.,andJiang,D.(2012).Pulmonaryfibrosis:pat-ternsandperpetrators.J.Clin.Invest.122,2756–2762.

O’Koren,E.G.,Hogan,B.L.,andGunn,M.D.(2013).Lossofbasalcellspre-cedesbronchiolitisobliterans-likepathologicalchangesinamurinemodelofchlorinegasinhalation.Am.J.Respir.CellMol.Biol.49,788–797.

Ohlstein,B.,andSpradling,A.(2007).MultipotentDrosophilaintestinalstemcellsspecifydaughtercellfatesbydifferentialnotchsignaling.Science315,988–992.

Ornitz,D.M.,andYin,Y.(2012).Signalingnetworksregulatingdevelopmentofthelowerrespiratorytract.ColdSpringHarb.Perspect.Biol.4,http://dx.doi.org/10.1101/cshperspect.a008318.

Ott,H.C.,Clippinger,B.,Conrad,C.,Schuetz,C.,Pomerantseva,I.,Ikonomou,L.,Kotton,D.,andVacanti,J.P.(2010).Regenerationandorthotopictrans-plantationofabioartificiallung.Nat.Med.16,927–933.

Paul,M.K.,Bisht,B.,Darmawan,D.O.,Chiou,R.,Ha,V.L.,Wallace,W.D.,Chon,A.T.,Hegab,A.E.,Grogan,T.,Elashoff,D.A.,etal.(2014).DynamicChangesinIntracellularROSLevelsRegulateAirwayBasalStemCellHomeo-stasisthroughNrf2-DependentNotchSignaling.CellStemCell15,thisissue,199–214.

Peng,T.,Tian,Y.,Boogerd,C.J.,Lu,M.M.,Kadzik,R.S.,Stewart,K.M.,Evans,S.M.,andMorrisey,E.E.(2013).Coordinationofheartandlungco-develop-mentbyamultipotentcardiopulmonaryprogenitor.Nature500,589–592.Petersen,T.H.,Calle,E.A.,Zhao,L.,Lee,E.J.,Gui,L.,Raredon,M.B.,Gavrilov,K.,Yi,T.,Zhuang,Z.W.,Breuer,C.,etal.(2010).Tissue-engineeredlungsforinvivoimplantation.Science329,538–541.

Pillai,S.G.,Ge,D.,Zhu,G.,Kong,X.,Shianna,K.V.,Need,A.C.,Feng,S.,Hersh,C.P.,Bakke,P.,Gulsvik,A.,etal.;ICGNInvestigators(2009).Agenome-wide

CellReview

StemCell

associationstudyinchronicobstructivepulmonarydisease(COPD):identifica-tionoftwomajorsusceptibilityloci.PLoSGenet.5,e1000421.

Price,A.P.,England,K.A.,Matson,A.M.,Blazar,B.R.,andPanoskaltsis-Mor-tari,A.(2010).Developmentofadecellularizedlungbioreactorsystemforbioengineeringthelung:thematrixreloaded.TissueEng.PartA16,2581–2591.

Ramirez,M.I.,Chung,U.I.,andWilliams,M.C.(2000).Aquaporin-5expression,butnototherperipherallungmarkergenes,isreducedinPTH/PTHrPreceptornullmutantfetalmice.Am.J.Respir.CellMol.Biol.22,367–372.

Ravikumar,P.,Yilmaz,C.,Bellotto,D.J.,Dane,D.M.,Estrera,A.S.,andHsia,C.C.(2013).Separatinginvivomechanicalstimuliforpostpneumonectomycompensation:imagingandultrastructuralassessment.J.Appl.Physiol.114,961–970.

Ravikumar,P.,Yilmaz,C.,Dane,D.M.,Bellotto,D.J.,Estrera,A.S.,andHsia,C.C.(2014).Definingastimuli-responserelationshipincompensatorylunggrowthfollowingmajorresection.J.Appl.Physiol.116,816–824.

Rawlins,E.L.,Clark,C.P.,Xue,Y.,andHogan,B.L.(2009a).TheId2+distaltiplungepitheliumcontainsindividualmultipotentembryonicprogenitorcells.Development136,3741–3745.

Rawlins,E.L.,Okubo,T.,Xue,Y.,Brass,D.M.,Auten,R.L.,Hasegawa,H.,Wang,F.,andHogan,B.L.(2009b).TheroleofScgb1a1+Claracellsinthelong-termmaintenanceandrepairoflungairway,butnotalveolar,epithelium.CellStemCell4,525–534.

Rock,J.R.,Onaitis,M.W.,Rawlins,E.L.,Lu,Y.,Clark,C.P.,Xue,Y.,Randell,S.H.,andHogan,B.L.(2009).Basalcellsasstemcellsofthemousetracheaandhumanairwayepithelium.Proc.Natl.Acad.Sci.USA106,12771–12775.Rock,J.R.,Randell,S.H.,andHogan,B.L.(2010).Airwaybasalstemcells:aperspectiveontheirrolesinepithelialhomeostasisandremodeling.Dis.Model.Mech.3,545–556.

Rock,J.R.,Barkauskas,C.E.,Cronce,M.J.,Xue,Y.,Harris,J.R.,Liang,J.,No-ble,P.W.,andHogan,B.L.M.(2011a).Multiplestromalpopulationscontributetopulmonaryfibrosiswithoutevidenceforepithelial-to-mesenchymaltransi-tion.Proc.Natl.Acad.Sci.USA.108,E1475–E1483.

Rock,J.R.,Gao,X.,Xue,Y.,Randell,S.H.,Kong,Y.Y.,andHogan,B.L.(2011b).Notch-dependentdifferentiationofadultairwaybasalstemcells.CellStemCell8,639–648.

Rockich,B.E.,Hrycaj,S.M.,Shih,H.P.,Nagy,M.S.,Ferguson,M.A.,Kopp,J.L.,Sander,M.,Wellik,D.M.,andSpence,J.R.(2013).Sox9playsmultiplerolesinthelungepitheliumduringbranchingmorphogenesis.Proc.Natl.Acad.Sci.USA110,E4456–E4464.

Sannes,P.L.(1984).Differencesinbasementmembrane-associatedmicrodo-mainsoftypeIandtypeIIpneumocytesintheratandrabbitlung.JHistochem.Cytochem.32,827–833.

Shi,W.,Chen,F.,andCardoso,W.V.(2009).Mechanismsoflungdevelop-ment:contributiontoadultlungdiseaseandrelevancetochronicobstructivepulmonarydisease.Proc.Am.Thorac.Soc.6,558–563.

Sirianni,F.E.,Chu,F.S.,andWalker,C.D.(2003).Humanalveolarwallfibro-blastsdirectlylinkepithelialtype2cellstocapillaryendothelium.Am.J.Respir.Crit.CareMed.168,1532–1537.

Short,K.,Hodson,M.,andSmyth,I.(2013).Spatialmappingandquantifica-tionofdevelopmentalbranchingmorphogenesis.Development140,471–478.Shu,W.,Lu,M.M.,Zhang,Y.,Tucker,P.W.,Zhou,D.,andMorrisey,E.E.(2007).Foxp2andFoxp1cooperativelyregulatelungandesophagusdevelop-ment.Development134,1991–2000.

Song,H.,Yao,E.,Lin,C.,Gacayan,R.,Chen,M.H.,andChuang,P.T.(2012).Functionalcharacterizationofpulmonaryneuroendocrinecellsinlungdevel-opment,injury,andtumorigenesis.Proc.Natl.Acad.Sci.USA109,17531–17536.

Takeda,N.,Jain,R.,Leboeuf,M.R.,Padmanabhan,A.,Wang,Q.,Li,L.,Lu,M.M.,Millar,S.E.,andEpstein,J.A.(2013).HopxexpressiondefinesasubsetofmultipotenthairfolliclestemcellsandaprogenitorpopulationprimedtogiverisetoK6+nichecells.Development140,1655–1664.

Tanjore,H.,Degryse,A.L.,Crossno,P.F.,Xu,X.C.,McConaha,M.E.,Jones,B.R.,Polosukhin,V.V.,Bryant,A.J.,Cheng,D.S.,Newcomb,D.C.,etal.

(2013).b-catenininthealveolarepitheliumprotectsfromlungfibrosisafterin-tratrachealbleomycin.Am.J.Respir.Crit.CareMed.187,630–639.

Tata,P.R.,Mou,H.,Pardo-Saganta,A.,Zhao,R.,Prabhu,M.,Law,B.M.,Vi-narsky,V.,Cho,J.L.,Breton,S.,Sahay,A.,etal.(2013).Dedifferentiationofcommittedepithelialcellsintostemcellsinvivo.Nature503,218–223.Teixeira,V.H.,Nadarajan,P.,Graham,T.A.,Pipinikas,C.P.,Brown,J.M.,Fal-zon,M.,Nye,E.,Poulsom,R.,Lawrence,D.,Wright,N.A.,etal.(2013).Sto-chastichomeostasisinhumanairwayepitheliumisachievedbyneutralcompetitionofbasalcellprogenitors.Elife(Cambridge)2,e00966.

Thane,K.,Ingenito,E.P.,andHoffman,A.M.(2014).Lungregenerationandtranslationalimplicationsofthepostpneumonectomymodel.Transl.Res.163,363–376.

Tian,Y.,Zhang,Y.,Hurd,L.,Hannenhalli,S.,Liu,F.,Lu,M.M.,andMorrisey,E.E.(2011).RegulationoflungendodermprogenitorcellbehaviorbymiR302/367.Development138,1235–1245.

Toufen,C.,Jr.,Costa,E.L.,Hirota,A.S.,Li,H.Y.,Amato,M.B.,andCarvalho,C.R.(2011).Follow-upafteracuterespiratorydistresssyndromecausedbyinfluenzaa(H1N1)virusinfection.Clinics(SaoPaulo)66,933–937.

Treutlein,B.,Brownfield,D.G.,Wu,A.R.,Neff,N.F.,Mantalas,G.L.,Espinoza,F.H.,Desai,T.J.,Krasnow,M.A.,andQuake,S.R.(2014).Reconstructingline-agehierarchiesofthedistallungepitheliumusingsingle-cellRNA-seq.Nature509,371–375.

Tropea,K.A.,Leder,E.,Aslam,M.,Lau,A.N.,Raiser,D.M.,Lee,J.H.,Balasu-bramaniam,V.,Fredenburgh,L.E.,AlexMitsialis,S.,Kourembanas,S.,andKim,C.F.(2012).Bronchioalveolarstemcellsincreaseaftermesenchymalstromalcelltreatmentinamousemodelofbronchopulmonarydysplasia.Am.J.Physiol.LungCell.Mol.Physiol.302,L829–L837.

Tsao,P.N.,Vasconcelos,M.,Izvolsky,K.I.,Qian,J.,Lu,J.,andCardoso,W.V.(2009).Notchsignalingcontrolsthebalanceofciliatedandsecretorycellfatesindevelopingairways.Development136,2297–2307.

Ventura,A.,Young,A.G.,Winslow,M.M.,Lintault,L.,Meissner,A.,Erkeland,S.J.,Newman,J.,Bronson,R.T.,Crowley,D.,Stone,J.R.,etal.(2008).Tar-geteddeletionrevealsessentialandoverlappingfunctionsofthemiR-17through92familyofmiRNAclusters.Cell132,875–886.

Volckaert,T.,Dill,E.,Campbell,A.,Tiozzo,C.,Majka,S.,Bellusci,S.,andDeLanghe,S.P.(2011).Parabronchialsmoothmuscleconstitutesanairwayepithelialstemcellnicheinthemouselungafterinjury.J.Clin.Invest.121,4409–4419.

Voswinckel,R.,Motejl,V.,Fehrenbach,A.,Wegmann,M.,Mehling,T.,Fehren-bach,H.,andSeeger,W.(2004).Characterisationofpost-pneumonectomylunggrowthinadultmice.Eur.Respir.J.24,524–532.

Wagner,D.E.,Bonenfant,N.R.,Sokocevic,D.,Desarno,M.J.,Borg,Z.D.,Par-sons,C.S.,Brooks,E.M.,Platz,J.J.,Khalpey,Z.I.,Hoganson,D.M.,etal.(2014).Three-dimensionalscaffoldsofacellularhumanandporcinelungsforhighthroughputstudiesoflungdiseaseandregeneration.Biomaterials35,2664–2679.

Wang,B.,Zhou,H.,Yang,J.,Xiao,J.,Liang,B.,Li,D.,Zhou,H.,Zeng,Q.,Fang,C.,Rao,Z.,etal.(2013a).AssociationofHHIPpolymorphismswithCOPDandCOPD-relatedphenotypesinaChineseHanpopulation.Gene531,101–105.

Wang,Y.,Tian,Y.,Morley,M.P.,Lu,M.M.,Demayo,F.J.,Olson,E.N.,andMorrisey,E.E.(2013b).DevelopmentandregenerationofSox2+endodermprogenitorsareregulatedbyaHdac1/2-Bmp4/Rb1regulatorypathway.Dev.Cell24,345–358.

Wang,X.,Li,J.,Riaz,D.R.,Shi,G.,Liu,C.,andDai,Y.(2014).OutcomesofLiverTransplantationforNonalcoholicSteatohepatitis:ASystematicReviewandMeta-analysis.Clinicalgastroenterologyandhepatology:theofficialclinicalpracticejournaloftheAmericanGastroenterologicalAssociation12,394–402.e391.

Wansleeben,C.,Bowie,E.,Hotten,D.F.,Yu,Y.R.,andHogan,B.L.(2014).Age-relatedchangesinthecellularcompositionandepithelialorganizationofthemousetrachea.PLoSONE9,e93496.

Weibel,E.R.(2013).Ittakesmorethancellstomakeagoodlung.Am.J.Respir.Crit.CareMed.187,342–346.

CellStemCell15,August7,2014ª2014ElsevierInc.137

Westphalen,K.,Gusarova,G.A.,Islam,M.N.,Subramanian,M.,Cohen,T.S.,Prince,A.S.,andBhattacharya,J.(2014).Sessilealveolarmacrophagescommunicatewithalveolarepitheliumtomodulateimmunity.Nature506,503–506.

Wilk,J.B.,Chen,T.H.,Gottlieb,D.J.,Walter,R.E.,Nagle,M.W.,Brandler,B.J.,Myers,R.H.,Borecki,I.B.,Silverman,E.K.,Weiss,S.T.,andO’Connor,G.T.(2009).Agenome-wideassociationstudyofpulmonaryfunctionmeasuresintheFraminghamHeartStudy.PLoSGenet.5,e1000429.

Wirtz,H.R.,andDobbs,L.G.(2000).Theeffectsofmechanicalforcesonlungfunctions.Respir.Physiol.119,1–17.

Wong,A.P.,Bear,C.E.,Chin,S.,Pasceri,P.,Thompson,T.O.,Huan,L.J.,Ratjen,F.,Ellis,J.,andRossant,J.(2012).DirecteddifferentiationofhumanpluripotentstemcellsintomatureairwayepitheliaexpressingfunctionalCFTRprotein.Nat.Biotechnol.30,876–882.

Xian,W.,andMcKeon,F.(2012).Adultstemcellsunderlyinglungregenera-tion.CellCycle11,887–894.

Xing,Y.,Li,A.,Borok,Z.,Li,C.,andMinoo,P.(2012).NOTCH1isrequiredforregenerationofClaracellsduringrepairofairwayinjury.StemCells30,946–955.

Xu,X.,Rock,J.R.,Lu,Y.,Futtner,C.,Schwab,B.,Guinney,J.,Hogan,B.L.,andOnaitis,M.W.(2012).EvidencefortypeIIcellsascellsoforiginofK-138CellStemCell15,August7,2014ª2014ElsevierInc.

Review

CellStemCell

Ras-induceddistallungadenocarcinoma.Proc.Natl.Acad.Sci.USA109,4910–4915.

Yilmaz,C.,Tustison,N.J.,Dane,D.M.,Ravikumar,P.,Takahashi,M.,Gee,J.C.,andHsia,C.C.(2011).Progressiveadaptationinregionalparenchymamechanicsfollowingextensivelungresectionassessedbyfunctionalcomputedtomography.J.Appl.Physiol.111,1150–1158.

Yin,Z.,Gonzales,L.,Kolla,V.,Rath,N.,Zhang,Y.,Lu,M.M.,Kimura,S.,Bal-lard,P.L.,Beers,M.F.,Epstein,J.A.,andMorrisey,E.E.(2006).HopfunctionsdownstreamofNkx2.1andGATA6tomediateHDAC-dependentnegativeregulationofpulmonarygeneexpression.Am.J.Physiol.LungCell.Mol.Phys-iol.291,L191–L199.

Zemke,A.C.,Teisanu,R.M.,Giangreco,A.,Drake,J.A.,Brockway,B.L.,Rey-nolds,S.D.,andStripp,B.R.(2009).beta-Cateninisnotnecessaryformainte-nanceorrepairofthebronchiolarepithelium.Am.J.Respir.CellMol.Biol.41,535–543.

Zhang,Y.,Goss,A.M.,Cohen,E.D.,Kadzik,R.,Lepore,J.J.,Muthukumarasw-amy,K.,Yang,J.,DeMayo,F.J.,Whitsett,J.A.,Parmacek,M.S.,andMorrisey,E.E.(2008).AGata6-Wntpathwayrequiredforepithelialstemcelldevelop-mentandairwayregeneration.Nat.Genet.40,862–870.

Zheng,D.,Yin,L.,andChen,J.(2014).EvidenceforScgb1a1(+)cellsinthegenerationofp63(+)cellsinthedamagedlungparenchyma.Am.J.Respir.CellMol.Biol.50,595–604.

因篇幅问题不能全部显示,请点此查看更多更全内容