您的当前位置:首页正文

初一数学一元一次方程应用题

2021-12-18 来源:欧得旅游网
一元一次方程应用题归类

列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助. 1. 和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率„„”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现。 例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2001年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度? 分析:等量关系为:

2. 等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积。

例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为125125mm内高为81mm

.) 的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数314 分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积

3. 劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变。

例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

4. 比例分配问题:

这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和=总量。

例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?

1

25. 数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数

等量关系:

6. 工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率×工作时间

经常在题目中未给出工作总量时,设工作总量为单位1。

例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 分析设工程总量为单位1,等量关系为:

7. 行程问题:

(1)行程问题中的三个基本量及其关系: 路程=速度×时间。 (2)基本类型有

① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。

例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里?

(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?

此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 (1)分析:相遇问题,画图表示为: 甲 乙

等量关系是:

600 9. 储蓄问题

(2)分析:相背而行,画图表示为: 甲 乙

等量关系是:

(3)分析:等量关系为:快车所走路程-慢车所走路程 +480公里=600公里。

解:设x小时后两车相距600公里,由题意得,

(4)分析:追及问题,画图表示为: 甲 乙

等量关系为:快车的路程=慢车走的路程+480公里。 解:设x小时后快车追上慢车。 由题意得,

(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

解:

8. 利润赢亏问题

(1)销售问题中常出现的量有:进价、售价、标价、利润等 (2)有关关系式:

商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 商品利润率=商品利润/商品进价 商品售价=商品标价×折扣率

例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

分析:探究题目中隐含的条件是关键,可直接设出成本为X元 进价 折扣率 标价 优惠价 利润 x元 8折 (1+40%)x元 80%(1+40%)x 15元 等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15

解:设进价为X元,

⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入

银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

⑵ 利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)

例9. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

分析:等量关系:本息和=本金×(1+利率) 解:设半年期的实际利率为x,

答:

此处还有“方案决策问题 鸡兔同笼问题 购票问题 积分问题 航行问题”等

10、设辅助未知数:

1.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票

2占总票数的3,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票3的5,零售票每张16元,共售出零售票的一半,如果在六月份内,团体票按16元出售,并计划在六月

份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?

2. 现对某商品降价10%促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几? 11、浓度问题:

1.有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水______________千克。

某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?

12、(十一)古典数学:

1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。

2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

2

因篇幅问题不能全部显示,请点此查看更多更全内容